Suppr超能文献

人类核糖体病施瓦赫曼-戴蒙德综合征的分子基础。

Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome.

作者信息

Warren Alan J

机构信息

Cambridge Institute for Medical Research, Cambridge, UK; The Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.

出版信息

Adv Biol Regul. 2018 Jan;67:109-127. doi: 10.1016/j.jbior.2017.09.002. Epub 2017 Sep 6.

Abstract

Mutations that target the ubiquitous process of ribosome assembly paradoxically cause diverse tissue-specific disorders (ribosomopathies) that are often associated with an increased risk of cancer. Ribosomes are the essential macromolecular machines that read the genetic code in all cells in all kingdoms of life. Following pre-assembly in the nucleus, precursors of the large 60S and small 40S ribosomal subunits are exported to the cytoplasm where the final steps in maturation are completed. Here, I review the recent insights into the conserved mechanisms of ribosome assembly that have come from functional characterisation of the genes mutated in human ribosomopathies. In particular, recent advances in cryo-electron microscopy, coupled with genetic, biochemical and prior structural data, have revealed that the SBDS protein that is deficient in the inherited leukaemia predisposition disorder Shwachman-Diamond syndrome couples the final step in cytoplasmic 60S ribosomal subunit maturation to a quality control assessment of the structural and functional integrity of the nascent particle. Thus, study of this fascinating disorder is providing remarkable insights into how the large ribosomal subunit is functionally activated in the cytoplasm to enter the actively translating pool of ribosomes.

摘要

靶向核糖体组装这一普遍过程的突变,却反常地引发了多种组织特异性疾病(核糖体病),这些疾病往往与癌症风险增加有关。核糖体是读取所有生命王国中所有细胞遗传密码的必需大分子机器。在细胞核中进行预组装后,大的60S和小的40S核糖体亚基的前体被输出到细胞质中,在那里完成成熟的最后步骤。在此,我回顾了近期对核糖体组装保守机制的见解,这些见解来自对人类核糖体病中突变基因的功能表征。特别是,冷冻电子显微镜的最新进展,结合遗传、生化和先前的结构数据,揭示了在遗传性白血病易感性疾病施瓦赫曼-戴蒙德综合征中缺乏的SBDS蛋白,将细胞质中60S核糖体亚基成熟的最后一步与新生颗粒结构和功能完整性的质量控制评估联系起来。因此,对这种迷人疾病的研究正在为大型核糖体亚基如何在细胞质中被功能性激活以进入活跃翻译的核糖体池提供非凡的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9548/6710477/1de0bb3da12d/gr1.jpg

相似文献

1
Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome.
Adv Biol Regul. 2018 Jan;67:109-127. doi: 10.1016/j.jbior.2017.09.002. Epub 2017 Sep 6.
2
Defective ribosome assembly in Shwachman-Diamond syndrome.
Blood. 2011 Oct 20;118(16):4305-12. doi: 10.1182/blood-2011-06-353938. Epub 2011 Jul 29.
3
Impaired ribosomal subunit association in Shwachman-Diamond syndrome.
Blood. 2012 Dec 20;120(26):5143-52. doi: 10.1182/blood-2012-04-420166. Epub 2012 Oct 31.
4
eIF6 anti-association activity is required for ribosome biogenesis, translational control and tumor progression.
Biochim Biophys Acta. 2015 Jul;1849(7):830-5. doi: 10.1016/j.bbagrm.2014.09.010. Epub 2014 Sep 22.
5
Defective Guanine Nucleotide Exchange in the Elongation Factor-like 1 (EFL1) GTPase by Mutations in the Shwachman-Diamond Syndrome Protein.
J Biol Chem. 2015 Jul 17;290(29):17669-17678. doi: 10.1074/jbc.M114.626275. Epub 2015 May 19.
8
Reduced EIF6 dosage attenuates TP53 activation in models of Shwachman-Diamond syndrome.
J Clin Invest. 2025 Feb 18;135(8). doi: 10.1172/JCI187778. eCollection 2025 Apr 15.
9
Mitochondrial function is impaired in yeast and human cellular models of Shwachman Diamond syndrome.
Biochem Biophys Res Commun. 2013 Jul 19;437(1):29-34. doi: 10.1016/j.bbrc.2013.06.028. Epub 2013 Jun 19.
10
Non-Diamond Blackfan anemia disorders of ribosome function: Shwachman Diamond syndrome and 5q- syndrome.
Semin Hematol. 2011 Apr;48(2):136-43. doi: 10.1053/j.seminhematol.2011.01.002.

引用本文的文献

2
A novel MAP7D1 mutation causes mitotic defects and RPS14 accumulation in Shwachman-Diamond syndrome patient cells.
Dis Model Mech. 2025 Aug 1;18(8). doi: 10.1242/dmm.052409. Epub 2025 Aug 26.
3
Structural Implications of Missense Point Mutations in Shwachman-Bodian-Diamond Syndrome Protein (SBDS): A Combined SAXS/MD Investigation.
ACS Omega. 2025 Aug 1;10(31):35103-35118. doi: 10.1021/acsomega.5c04764. eCollection 2025 Aug 12.
4
Mechanisms of ribosomopathy and phase separation-related ribosomopathy.
J Zhejiang Univ Sci B. 2025 Jun 2;26(6):503-526. doi: 10.1631/jzus.B2300904.
5
Emerging roles of ribosome translation in stem cells and stem cell therapy - a review.
Cell Biosci. 2025 May 28;15(1):71. doi: 10.1186/s13578-025-01412-y.
6
An ultraconserved snoRNA-like element in long noncoding RNA CRNDE promotes ribosome biogenesis and cell proliferation.
Mol Cell. 2025 Apr 17;85(8):1543-1560.e10. doi: 10.1016/j.molcel.2025.03.006. Epub 2025 Apr 3.
7
Lymphoid malignancies in patients with Shwachman-Diamond syndrome.
Blood. 2025 May 22;145(21):2528-2532. doi: 10.1182/blood.2024026507.
8
SNORD113-114 cluster maintains haematopoietic stem cell self-renewal via orchestrating the translation machinery.
Nat Cell Biol. 2025 Feb;27(2):246-261. doi: 10.1038/s41556-024-01593-7. Epub 2025 Jan 31.
9
Human oncostatin M deficiency underlies an inherited severe bone marrow failure syndrome.
J Clin Invest. 2025 Jan 23;135(6):e180981. doi: 10.1172/JCI180981.

本文引用的文献

1
PARN Modulates Y RNA Stability and Its 3'-End Formation.
Mol Cell Biol. 2017 Sep 26;37(20). doi: 10.1128/MCB.00264-17. Print 2017 Oct 15.
2
The T-cell leukemia related rpl10-R98S mutant traps the 60S export adapter Nmd3 in the ribosomal P site in yeast.
PLoS Genet. 2017 Jul 17;13(7):e1006894. doi: 10.1371/journal.pgen.1006894. eCollection 2017 Jul.
3
Poly(A)-specific ribonuclease is a nuclear ribosome biogenesis factor involved in human 18S rRNA maturation.
Nucleic Acids Res. 2017 Jun 20;45(11):6822-6836. doi: 10.1093/nar/gkx253.
6
A Ribosomopathy Reveals Decoding Defective Ribosomes Driving Human Dysmorphism.
Am J Hum Genet. 2017 Mar 2;100(3):506-522. doi: 10.1016/j.ajhg.2017.01.034.
7
Molecular architecture of the 90S small subunit pre-ribosome.
Elife. 2017 Feb 28;6:e22086. doi: 10.7554/eLife.22086.
8
Slowed decay of mRNAs enhances platelet specific translation.
Blood. 2017 Apr 27;129(17):e38-e48. doi: 10.1182/blood-2016-08-736108. Epub 2017 Feb 17.
9
Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis.
EMBO J. 2017 Apr 3;36(7):854-868. doi: 10.15252/embj.201696012. Epub 2017 Feb 8.
10
Prognostic Mutations in Myelodysplastic Syndrome after Stem-Cell Transplantation.
N Engl J Med. 2017 Feb 9;376(6):536-547. doi: 10.1056/NEJMoa1611604.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验