Yu Y William, Daniels Noah M, Danko David Christian, Berger Bonnie
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 ; Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
Cell Syst. 2015 Aug 26;1(2):130-140. doi: 10.1016/j.cels.2015.08.004.
Many data sets exhibit well-defined structure that can be exploited to design faster search tools, but it is not always clear when such acceleration is possible. Here we introduce a framework for similarity search based on characterizing a data set's entropy and fractal dimension. We prove that searching scales in time with metric entropy (number of covering hyperspheres), if the fractal dimension of the data set is low, and scales in space with the sum of metric entropy and information-theoretic entropy (randomness of the data). Using these ideas, we present accelerated versions of standard tools, with no loss in specificity and little loss in sensitivity, for use in three domains-high-throughput drug screening (Ammolite, 150x speedup), metagenomics (MICA, 3.5x speedup of DIAMOND (3700x BLASTX)), and protein structure search (esFragBag, 10x speedup of FragBag). Our framework can be used to achieve 'compressive omics,' and the general theory can be readily applied to data science problems outside of biology. Source code: http://gems.csail.mit.edu.
许多数据集呈现出可被利用来设计更快搜索工具的明确结构,但何时能够实现这种加速并不总是清晰的。在此,我们基于对数据集的熵和分形维进行特征化,引入了一个用于相似性搜索的框架。我们证明,如果数据集的分形维较低,搜索在时间上与度量熵(覆盖超球体的数量)成比例缩放,而在空间上与度量熵和信息论熵(数据的随机性)之和成比例缩放。利用这些理念,我们展示了标准工具的加速版本,在三个领域——高通量药物筛选(Ammolite,加速150倍)、宏基因组学(MICA,比DIAMOND加速3.5倍(比BLASTX加速3700倍))以及蛋白质结构搜索(esFragBag,比FragBag加速10倍)——中使用时,特异性无损失且敏感性仅有少量损失。我们的框架可用于实现“压缩组学”,并且该一般理论可轻松应用于生物学之外的数据科学问题。源代码:http://gems.csail.mit.edu