Molecular Nanofabrication, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands.
Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands.
Adv Mater. 2015 Nov 18;27(43):6781-96. doi: 10.1002/adma.201502632. Epub 2015 Oct 5.
Silicon is one of the main components of commercial solar cells and is used in many other solar-light-harvesting devices. The overall efficiency of these devices can be increased by the use of structured surfaces that contain nanometer- to micrometer-sized pillars with radial p/n junctions. High densities of such structures greatly enhance the light-absorbing properties of the device, whereas the 3D p/n junction geometry shortens the diffusion length of minority carriers and diminishes recombination. Due to the vast silicon nano- and microfabrication toolbox that exists nowadays, many versatile methods for the preparation of such highly structured samples are available. Furthermore, the formation of p/n junctions on structured surfaces is possible by a variety of doping techniques, in large part transferred from microelectronic circuit technology. The right choice of doping method, to achieve good control of junction depth and doping level, can contribute to an improvement of the overall efficiency that can be obtained in devices for energy applications. A review of the state-of-the-art of the fabrication and doping of silicon micro and nanopillars is presented here, as well as of the analysis of the properties and geometry of thus-formed 3D-structured p/n junctions.
硅是商用太阳能电池的主要组成部分之一,也被用于许多其他的太阳能光捕获设备中。通过使用包含纳米到微米级柱子的结构化表面,并在柱子上形成径向 p/n 结,可以提高这些设备的整体效率。这种结构的高密度极大地增强了器件的吸光特性,而 3D p/n 结几何形状缩短了少数载流子的扩散长度并减少了复合。由于当今存在大量的硅纳/微制造工具,因此有许多用于制备这种高度结构化样品的多功能方法。此外,通过各种掺杂技术可以在结构化表面上形成 p/n 结,其中很大一部分技术是从微电子电路技术中转移过来的。选择合适的掺杂方法,以实现对结深和掺杂水平的良好控制,可以有助于提高用于能源应用的器件中可以获得的整体效率。本文综述了硅微纳柱的制造和掺杂的最新进展,以及对由此形成的 3D 结构 p/n 结的特性和几何形状的分析。