Suppr超能文献

用于增强硅同质结太阳能电池电学特性的旋涂掺杂优化实验研究:概念验证。

An experimental investigation of spin-on doping optimization for enhanced electrical characteristics in silicon homojunction solar cells: Proof of concept.

作者信息

Mohamad Ili Salwani, Ker Pin Jern, Chelvanathan Puvaneswaran, Norizan Mohd Natashah, Yap Boon Kar, Tiong Sieh Kiong, Amin Nowshad

机构信息

Department of Electrical and Electronic Engineering, Universiti Tenaga Nasional, Kajang, 43000, Malaysia.

Universiti Malaysia Perlis (UniMAP), Arau, 02600, Malaysia.

出版信息

Heliyon. 2024 May 14;10(11):e31193. doi: 10.1016/j.heliyon.2024.e31193. eCollection 2024 Jun 15.

Abstract

The pursuit of enhancing the performance of silicon-based solar cells is pivotal for the progression of solar photovoltaics as the most potential renewable energy technologies. Despite the existence of sophisticated methods like diffusion and ion implantation for doping phosphorus into p-type silicon wafers in the semiconductor industry, there is a compelling need to research spin-on doping techniques, especially in the context of tandem devices, where fabricating the bottom cell demands meticulous control over conditions. The primary challenge with existing silicon cell fabrication methods lies in their complexity, cost, and environmental concerns. Thus, this research focuses on the optimization of parameters, such as, deposition of the spin on doping layer, emitter thickness (X), and dopant concentration (N) to maximize solar cell efficiency. We utilized both fabrication and simulation techniques to delve into these factors. Employing silicon wafer thickness of 625 μm, the study explored the effects of altering the count of dopant layers through the spin-on dopant (SOD) technique in the device fabrication. Interestingly, the increase of the dopant layers from 1 to 4 enhances efficiency, whereby, further addition of 6 and 8 layers worsens both series and shunt resistances, affecting the solar cell performance. The peak efficiency of 11.75 % achieved in fabrication of 4 layers dopant. By using device simulation with wxAMPS to perform a combinatorial analysis of X and N, we further identified the optimal conditions for an emitter to achieve peak performance. Altering X between 0.05 μm and 10 μm and adjusting N from 1e+15 cm to 9e+15 cm, we found that maximum efficiency of 14.18 % was attained for X = 1 μm and N = 9e+15 cm. This research addresses a crucial knowledge gap, providing insights for creating more efficient, cost-effective, and flexible silicon solar cells, thereby enhancing their viability as a sustainable energy source.

摘要

作为最具潜力的可再生能源技术,提高硅基太阳能电池的性能对于太阳能光伏的发展至关重要。尽管半导体行业存在诸如扩散和离子注入等复杂方法可用于将磷掺杂到p型硅片中,但迫切需要研究旋涂掺杂技术,特别是在串联器件的背景下,制造底部电池需要对条件进行精确控制。现有硅电池制造方法的主要挑战在于其复杂性、成本和环境问题。因此,本研究专注于优化参数,如旋涂掺杂层的沉积、发射极厚度(X)和掺杂剂浓度(N),以最大化太阳能电池效率。我们利用制造和模拟技术来深入研究这些因素。采用625μm厚的硅片,该研究通过旋涂掺杂剂(SOD)技术探索了改变掺杂剂层数对器件制造的影响。有趣的是,掺杂剂层数从1增加到4可提高效率,然而,进一步增加到6层和8层会使串联电阻和并联电阻都变差,从而影响太阳能电池性能。在制造4层掺杂剂时实现了11.75%的峰值效率。通过使用wxAMPS进行器件模拟对X和N进行组合分析,我们进一步确定了发射极实现峰值性能的最佳条件。在0.05μm至10μm之间改变X,并将N从1e + 15cm调整到9e + 15cm,我们发现当X = 1μm且N = 9e + 15cm时可达到14.18%的最大效率。本研究填补了一个关键的知识空白,为制造更高效、经济高效且灵活的硅太阳能电池提供了见解,从而提高了其作为可持续能源的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e794/11140604/ecd1619b6621/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验