Suppr超能文献

反事实推理的一种改进概率解释。

An improved probabilistic account of counterfactual reasoning.

作者信息

Lucas Christopher G, Kemp Charles

机构信息

School of Informatics, University of Edinburgh.

Department of Psychology, Carnegie Mellon University.

出版信息

Psychol Rev. 2015 Oct;122(4):700-34. doi: 10.1037/a0039655.

Abstract

When people want to identify the causes of an event, assign credit or blame, or learn from their mistakes, they often reflect on how things could have gone differently. In this kind of reasoning, one considers a counterfactual world in which some events are different from their real-world counterparts and considers what else would have changed. Researchers have recently proposed several probabilistic models that aim to capture how people do (or should) reason about counterfactuals. We present a new model and show that it accounts better for human inferences than several alternative models. Our model builds on the work of Pearl (2000), and extends his approach in a way that accommodates backtracking inferences and that acknowledges the difference between counterfactual interventions and counterfactual observations. We present 6 new experiments and analyze data from 4 experiments carried out by Rips (2010), and the results suggest that the new model provides an accurate account of both mean human judgments and the judgments of individuals. (PsycINFO Database Record

摘要

当人们想要确定某一事件的原因、追究责任或从错误中吸取教训时,他们常常会思考事情原本可能会有怎样不同的发展。在这种推理过程中,人们会设想一个反事实世界,其中某些事件与现实世界中的对应事件不同,并思考其他方面会发生怎样的变化。研究人员最近提出了几种概率模型,旨在捕捉人们如何(或应该如何)对反事实情况进行推理。我们提出了一种新模型,并表明它比其他几种替代模型能更好地解释人类推理。我们的模型基于珀尔(2000年)的研究成果,并以一种既能容纳回溯推理又能认识到反事实干预与反事实观察之间差异的方式扩展了他的方法。我们展示了6个新实验,并分析了里普斯(2010年)进行的4个实验的数据,结果表明新模型能够准确解释人类的平均判断以及个体的判断。(《心理学文摘数据库记录》

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验