Suppr超能文献

语境偏好反转的脆弱性:对 Tsetsos、Chatter 和 Usher(2015)的回应。

The fragile nature of contextual preference reversals: Reply to Tsetsos, Chater, and Usher (2015).

机构信息

Department of Psychology, Vanderbilt University.

School of Psychology, University of Newcastle.

出版信息

Psychol Rev. 2015 Oct;122(4):848-53. doi: 10.1037/a0039656.

Abstract

Trueblood, Brown, and Heathcote (2014) developed a new model, called the multiattribute linear ballistic accumulator (MLBA), to explain contextual preference reversals in multialternative choice. MLBA was shown to provide good accounts of human behavior through both qualitative analyses and quantitative fitting of choice data. Tsetsos, Chater, and Usher (2015) investigated the ability of MLBA to simultaneously capture 3 prominent context effects (attraction, compromise, and similarity). They concluded that MLBA must set a "fine balance" of competing forces to account for all 3 effects simultaneously and that its predictions are sensitive to the position of the stimuli in the attribute space. Through a new experiment, we show that the 3 effects are very fragile and that only a small subset of people shows all 3 simultaneously. Thus, the predictions that Tsetsos et al. generated from the MLBA model turn out to match closely real data in a new experiment. Support for these predictions provides strong evidence for the MLBA. A corollary is that a model that can "robustly" capture all 3 effects simultaneously is not necessarily a good model. Rather, a good model captures patterns found in human data, but cannot accommodate patterns that are not found.

摘要

特鲁布、布朗和希思科特(2014 年)开发了一种新模型,称为多属性线性弹道累加器(MLBA),用于解释多选择中的上下文偏好反转。通过定性分析和对选择数据的定量拟合,MLBA 被证明能够很好地解释人类行为。Tsetsos、Chatter 和 Usher(2015 年)研究了 MLBA 同时捕捉 3 种突出的上下文效应(吸引力、妥协和相似性)的能力。他们得出结论,MLBA 必须在竞争力量之间保持“微妙的平衡”,才能同时解释所有 3 种效应,并且其预测对刺激在属性空间中的位置敏感。通过一项新实验,我们表明这 3 种效应非常脆弱,只有一小部分人同时表现出这 3 种效应。因此,特鲁布等人从 MLBA 模型中生成的预测结果与新实验中的真实数据非常吻合。对这些预测的支持为 MLBA 提供了有力的证据。其推论是,能够“稳健”地同时捕捉所有 3 种效应的模型不一定是一个好模型。相反,一个好的模型捕捉到了在人类数据中发现的模式,但不能适应未发现的模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验