Vanier Gaëtan, Hempel Franziska, Chan Philippe, Rodamer Michael, Vaudry David, Maier Uwe G, Lerouge Patrice, Bardor Muriel
Laboratoire Glycobiologie et Matrice Extracellulaire végétale Equipe d'Accueil 4358, Faculté des sciences et techniques, Université de Rouen, Normandie Université, Institut de Recherche et d'Innovation Biomédicale, Végétale Agronomie Sol Innovation, Mont-Saint-Aignan, France.
LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany.
PLoS One. 2015 Oct 5;10(10):e0139282. doi: 10.1371/journal.pone.0139282. eCollection 2015.
Monoclonal antibodies (mAbs) represent actually the major class of biopharmaceuticals. They are produced recombinantly using living cells as biofactories. Among the different expression systems currently available, microalgae represent an emerging alternative which displays several biotechnological advantages. Indeed, microalgae are classified as generally recognized as safe organisms and can be grown easily in bioreactors with high growth rates similarly to CHO cells. Moreover, microalgae exhibit a phototrophic lifestyle involving low production costs as protein expression is fueled by photosynthesis. However, questions remain to be solved before any industrial production of algae-made biopharmaceuticals. Among them, protein heterogeneity as well as protein post-translational modifications need to be evaluated. Especially, N-glycosylation acquired by the secreted recombinant proteins is of major concern since most of the biopharmaceuticals including mAbs are N-glycosylated and it is well recognized that glycosylation represent one of their critical quality attribute. In this paper, we assess the quality of the first recombinant algae-made mAbs produced in the diatom, Phaeodactylum tricornutum. We are focusing on the characterization of their C- and N-terminal extremities, their signal peptide cleavage and their post-translational modifications including N-glycosylation macro- and microheterogeneity. This study brings understanding on diatom cellular biology, especially secretion and intracellular trafficking of proteins. Overall, it reinforces the positioning of P. tricornutum as an emerging host for the production of biopharmaceuticals and prove that P. tricornutum is suitable for producing recombinant proteins bearing high mannose-type N-glycans.
单克隆抗体(mAbs)实际上是生物制药的主要类别。它们通过将活细胞用作生物工厂进行重组生产。在目前可用的不同表达系统中,微藻是一种新兴的替代方案,具有多种生物技术优势。事实上,微藻被归类为一般认为安全的生物,并且可以在生物反应器中轻松生长,生长速率与CHO细胞相似。此外,微藻具有光合营养型生活方式,由于蛋白质表达由光合作用提供能量,因此生产成本较低。然而,在藻类制造的生物制药进行任何工业化生产之前,仍有一些问题有待解决。其中,蛋白质异质性以及蛋白质翻译后修饰需要评估。特别是,分泌的重组蛋白获得的N-糖基化是主要关注点,因为包括单克隆抗体在内的大多数生物制药都是N-糖基化的,并且人们普遍认识到糖基化是其关键质量属性之一。在本文中,我们评估了在硅藻三角褐指藻中生产的首批重组藻类制造的单克隆抗体的质量。我们专注于其C端和N端末端的表征、信号肽切割以及包括N-糖基化宏观和微观异质性在内的翻译后修饰。这项研究有助于理解硅藻细胞生物学,特别是蛋白质的分泌和细胞内运输。总体而言,它加强了三角褐指藻作为生物制药生产新兴宿主的定位,并证明三角褐指藻适合生产带有高甘露糖型N-聚糖的重组蛋白。