Arakha Manoranjan, Pal Sweta, Samantarrai Devyani, Panigrahi Tapan K, Mallick Bairagi C, Pramanik Krishna, Mallick Bibekanand, Jha Suman
Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
Department of Biotechnology, North Orissa University, Baripada, Odisha 757003, India.
Sci Rep. 2015 Oct 6;5:14813. doi: 10.1038/srep14813.
Investigating the interaction patterns at nano-bio interface is a key challenge for safe use of nanoparticles (NPs) to any biological system. The study intends to explore the role of interaction pattern at the iron oxide nanoparticle (IONP)-bacteria interface affecting antimicrobial propensity of IONP. To this end, IONP with magnetite like atomic arrangement and negative surface potential (n-IONP) was synthesized by co-precipitation method. Positively charged chitosan molecule coating was used to reverse the surface potential of n-IONP, i.e. positive surface potential IONP (p-IONP). The comparative data from fourier transform infrared spectroscope, XRD, and zeta potential analyzer indicated the successful coating of IONP surface with chitosan molecule. Additionally, the nanocrystals obtained were found to have spherical size with 10-20 nm diameter. The BacLight fluorescence assay, bacterial growth kinetic and colony forming unit studies indicated that n-IONP (<50 μM) has insignificant antimicrobial activity against Bacillus subtilis and Escherichia coli. However, coating with chitosan molecule resulted significant increase in antimicrobial propensity of IONP. Additionally, the assay to study reactive oxygen species (ROS) indicated relatively higher ROS production upon p-IONP treatment of the bacteria. The data, altogether, indicated that the chitosan coating of IONP result in interface that enhances ROS production, hence the antimicrobial activity.
研究纳米-生物界面的相互作用模式是纳米颗粒(NPs)安全应用于任何生物系统的关键挑战。本研究旨在探索氧化铁纳米颗粒(IONP)-细菌界面的相互作用模式对IONP抗菌倾向的影响。为此,通过共沉淀法合成了具有磁铁矿样原子排列和负表面电位的IONP(n-IONP)。使用带正电荷的壳聚糖分子涂层来反转n-IONP的表面电位,即正表面电位IONP(p-IONP)。傅里叶变换红外光谱仪、X射线衍射仪和zeta电位分析仪的对比数据表明壳聚糖分子成功包覆在IONP表面。此外,所获得的纳米晶体呈球形,直径为10-20nm。BacLight荧光测定、细菌生长动力学和菌落形成单位研究表明,n-IONP(<50μM)对枯草芽孢杆菌和大肠杆菌的抗菌活性不显著。然而,用壳聚糖分子包覆导致IONP的抗菌倾向显著增加。此外,研究活性氧(ROS)的试验表明,p-IONP处理细菌后产生的ROS相对较高。总体数据表明,IONP的壳聚糖涂层导致界面增强ROS产生,从而增强抗菌活性。