Suppr超能文献

受小脑启发的神经网络对逆运动学问题的解决方案。

Cerebellum-inspired neural network solution of the inverse kinematics problem.

作者信息

Asadi-Eydivand Mitra, Ebadzadeh Mohammad Mehdi, Solati-Hashjin Mehran, Darlot Christian, Abu Osman Noor Azuan

机构信息

Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.

Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, 15914, Iran.

出版信息

Biol Cybern. 2015 Dec;109(6):561-74. doi: 10.1007/s00422-015-0661-7. Epub 2015 Oct 5.

Abstract

The demand today for more complex robots that have manipulators with higher degrees of freedom is increasing because of technological advances. Obtaining the precise movement for a desired trajectory or a sequence of arm and positions requires the computation of the inverse kinematic (IK) function, which is a major problem in robotics. The solution of the IK problem leads robots to the precise position and orientation of their end-effector. We developed a bioinspired solution comparable with the cerebellar anatomy and function to solve the said problem. The proposed model is stable under all conditions merely by parameter determination, in contrast to recursive model-based solutions, which remain stable only under certain conditions. We modified the proposed model for the simple two-segmented arm to prove the feasibility of the model under a basic condition. A fuzzy neural network through its learning method was used to compute the parameters of the system. Simulation results show the practical feasibility and efficiency of the proposed model in robotics. The main advantage of the proposed model is its generalizability and potential use in any robot.

摘要

由于技术进步,如今对具有更高自由度操纵器的更复杂机器人的需求正在增加。要获得期望轨迹或一系列手臂位置的精确运动,需要计算逆运动学(IK)函数,这是机器人技术中的一个主要问题。解决IK问题可使机器人到达其末端执行器的精确位置和方向。我们开发了一种与小脑解剖结构和功能相当的仿生解决方案来解决上述问题。与仅在某些条件下保持稳定的基于递归模型的解决方案相比,所提出的模型仅通过参数确定在所有条件下都是稳定的。我们对提出的简单双节臂模型进行了修改,以证明该模型在基本条件下的可行性。通过其学习方法的模糊神经网络用于计算系统参数。仿真结果表明了所提出模型在机器人技术中的实际可行性和效率。所提出模型的主要优点是其通用性以及在任何机器人中的潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ced/4656719/e20791b319c0/422_2015_661_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验