Suppr超能文献

野油菜黄单胞菌过氧化物氧还蛋白Q在还原态和氧化态下的主链化学位移归属:主链动力学的显著变化

Backbone chemical shift assignments for Xanthomonas campestris peroxiredoxin Q in the reduced and oxidized states: a dramatic change in backbone dynamics.

作者信息

Buchko Garry W, Perkins Arden, Parsonage Derek, Poole Leslie B, Karplus P Andrew

机构信息

Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.

Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA.

出版信息

Biomol NMR Assign. 2016 Apr;10(1):57-61. doi: 10.1007/s12104-015-9637-8. Epub 2015 Sep 15.

Abstract

Peroxiredoxins (Prx) are ubiquitous enzymes that reduce peroxides as part of antioxidant defenses and redox signaling. While Prx catalytic activity and sensitivity to hyperoxidative inactivation depend on their dynamic properties, there are few examples where their dynamics has been characterized by NMR spectroscopy. Here, we provide a foundation for studies of the solution properties of peroxiredoxin Q from the plant pathogen Xanthomonas campestris (XcPrxQ) by assigning the observable (1)H(N), (15)N, (13)C(α), (13)C(β), and (13)C' chemical shifts for both the reduced (dithiol) and oxidized (disulfide) states. In the reduced state, most of the backbone amide resonances (149/152, 98 %) can be assigned in the XcPrxQ (1)H-(15)N HSQC spectrum. In contrast, a remarkable 51 % (77) of these amide resonances are not visible in the (1)H-(15)N HSQC spectrum of the disulfide state of the enzyme, indicating a substantial change in backbone dynamics associated with the formation of an intramolecular C48-C84 disulfide bond.

摘要

过氧化物酶(Prx)是一种普遍存在的酶,作为抗氧化防御和氧化还原信号传导的一部分,可还原过氧化物。虽然Prx的催化活性和对过度氧化失活的敏感性取决于其动态特性,但很少有例子通过核磁共振光谱对其动态特性进行表征。在这里,我们通过确定植物病原体野油菜黄单胞菌(XcPrxQ)中过氧化物酶Q在还原态(二硫醇)和氧化态(二硫键)下可观测的(1)H(N)、(15)N、(13)C(α)、(13)C(β)和(13)C'化学位移,为研究其溶液性质奠定了基础。在还原态下,XcPrxQ的(1)H-(15)N HSQC谱中大部分主链酰胺共振峰(149/152,98%)可以被归属。相比之下,在该酶二硫键状态的(1)H-(15)N HSQC谱中,这些酰胺共振峰中有高达51%(77个)不可见,这表明与分子内C48-C84二硫键形成相关联的主链动力学发生了显著变化。

相似文献

2
Extraordinary μs-ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q.
Biochim Biophys Acta. 2011 Dec;1814(12):1880-90. doi: 10.1016/j.bbapap.2011.07.011. Epub 2011 Jul 21.
3
Native state fluctuations in a peroxiredoxin active site match motions needed for catalysis.
Structure. 2022 Feb 3;30(2):278-288.e3. doi: 10.1016/j.str.2021.10.001. Epub 2021 Oct 21.
4
Solution NMR structures of oxidized and reduced Ehrlichia chaffeensis thioredoxin: NMR-invisible structure owing to backbone dynamics.
Acta Crystallogr F Struct Biol Commun. 2018 Jan 1;74(Pt 1):46-56. doi: 10.1107/S2053230X1701799X.
6
Peroxiredoxin Catalysis at Atomic Resolution.
Structure. 2016 Oct 4;24(10):1668-1678. doi: 10.1016/j.str.2016.07.012. Epub 2016 Sep 1.
8
H, N, C and C assignments of the two periplasmic domains of Neisseria meningitidis DsbD.
Biomol NMR Assign. 2017 Oct;11(2):181-186. doi: 10.1007/s12104-017-9743-x. Epub 2017 Jun 6.
10
1H, 13C and 15N chemical shift assignments of the thioredoxin from the obligate anaerobe Desulfovibrio vulgaris Hildenborough.
Biomol NMR Assign. 2011 Oct;5(2):177-9. doi: 10.1007/s12104-011-9294-5. Epub 2011 Feb 3.

引用本文的文献

1
Native state fluctuations in a peroxiredoxin active site match motions needed for catalysis.
Structure. 2022 Feb 3;30(2):278-288.e3. doi: 10.1016/j.str.2021.10.001. Epub 2021 Oct 21.
2
Peroxiredoxins wear many hats: Factors that fashion their peroxide sensing personalities.
Redox Biol. 2021 Jun;42:101959. doi: 10.1016/j.redox.2021.101959. Epub 2021 Apr 20.
3
Controls of nature: Secondary, tertiary, and quaternary structure of the enamel protein amelogenin in solution and on hydroxyapatite.
J Struct Biol. 2020 Dec 1;212(3):107630. doi: 10.1016/j.jsb.2020.107630. Epub 2020 Sep 24.
5
Solution structure for an Encephalitozoon cuniculi adrenodoxin-like protein in the oxidized state.
Protein Sci. 2020 Mar;29(3):809-817. doi: 10.1002/pro.3818. Epub 2020 Jan 20.
6
Solution NMR structures of oxidized and reduced Ehrlichia chaffeensis thioredoxin: NMR-invisible structure owing to backbone dynamics.
Acta Crystallogr F Struct Biol Commun. 2018 Jan 1;74(Pt 1):46-56. doi: 10.1107/S2053230X1701799X.
7
Backbone chemical shift assignments and secondary structure analysis of the U1 protein from the Bas-Congo virus.
Biomol NMR Assign. 2017 Apr;11(1):51-56. doi: 10.1007/s12104-016-9719-2. Epub 2016 Dec 15.
8
Peroxiredoxin Catalysis at Atomic Resolution.
Structure. 2016 Oct 4;24(10):1668-1678. doi: 10.1016/j.str.2016.07.012. Epub 2016 Sep 1.

本文引用的文献

1
Tuning of peroxiredoxin catalysis for various physiological roles.
Biochemistry. 2014 Dec 16;53(49):7693-705. doi: 10.1021/bi5013222. Epub 2014 Dec 1.
2
Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides.
J Biol Chem. 2012 Feb 10;287(7):4403-10. doi: 10.1074/jbc.R111.283432. Epub 2011 Dec 6.
3
Extraordinary μs-ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q.
Biochim Biophys Acta. 2011 Dec;1814(12):1880-90. doi: 10.1016/j.bbapap.2011.07.011. Epub 2011 Jul 21.
4
The Seattle Structural Genomics Center for Infectious Disease (SSGCID).
Infect Disord Drug Targets. 2009 Nov;9(5):493-506. doi: 10.2174/187152609789105687.
6
Cysteine pK(a) values for the bacterial peroxiredoxin AhpC.
Biochemistry. 2008 Dec 2;47(48):12860-8. doi: 10.1021/bi801718d.
7
Reconciling the chemistry and biology of reactive oxygen species.
Nat Chem Biol. 2008 May;4(5):278-86. doi: 10.1038/nchembio.85.
8
SuperPose: a simple server for sophisticated structural superposition.
Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W590-4. doi: 10.1093/nar/gkh477.
9
An NMR approach to structural proteomics.
Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1825-30. doi: 10.1073/pnas.042684599.
10
13C NMR chemical shifts can predict disulfide bond formation.
J Biomol NMR. 2000 Oct;18(2):165-71. doi: 10.1023/a:1008398416292.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验