Suppr超能文献

原子分辨率下的过氧化物酶催化作用。

Peroxiredoxin Catalysis at Atomic Resolution.

作者信息

Perkins Arden, Parsonage Derek, Nelson Kimberly J, Ogba O Maduka, Cheong Paul Ha-Yeon, Poole Leslie B, Karplus P Andrew

机构信息

Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.

Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.

出版信息

Structure. 2016 Oct 4;24(10):1668-1678. doi: 10.1016/j.str.2016.07.012. Epub 2016 Sep 1.

Abstract

Peroxiredoxins (Prxs) are ubiquitous cysteine-based peroxidases that guard cells against oxidative damage, are virulence factors for pathogens, and are involved in eukaryotic redox regulatory pathways. We have analyzed catalytically active crystals to capture atomic resolution snapshots of a PrxQ subfamily enzyme (from Xanthomonas campestris) proceeding through thiolate, sulfenate, and sulfinate species. These analyses provide structures of unprecedented accuracy for seeding theoretical studies, and reveal conformational intermediates giving insight into the reaction pathway. Based on a highly non-standard geometry seen for the sulfenate intermediate, we infer that the sulfenate formation itself can strongly promote local unfolding of the active site to enhance productive catalysis. Further, these structures reveal that preventing local unfolding, in this case via crystal contacts, results in facile hyperoxidative inactivation even for Prxs normally resistant to such inactivation. This supports previous proposals that conformation-specific inhibitors may be useful for achieving selective inhibition of Prxs that are drug targets.

摘要

过氧化物酶(Prxs)是普遍存在的基于半胱氨酸的过氧化物酶,可保护细胞免受氧化损伤,是病原体的毒力因子,并参与真核生物的氧化还原调节途径。我们分析了具有催化活性的晶体,以捕获PrxQ亚家族酶(来自野油菜黄单胞菌)通过硫醇盐、亚磺酸盐和亚磺酸盐物种的原子分辨率快照。这些分析提供了前所未有的高精度结构,用于开展理论研究,并揭示了有助于深入了解反应途径的构象中间体。基于亚磺酸盐中间体所见的高度非标准几何结构,我们推断亚磺酸盐的形成本身可以强烈促进活性位点的局部展开,以增强有效催化作用。此外,这些结构表明,在这种情况下通过晶体接触防止局部展开,即使对于通常抗这种失活的Prxs也会导致容易的超氧化失活。这支持了先前的提议,即构象特异性抑制剂可能有助于实现对作为药物靶点的Prxs的选择性抑制。

相似文献

1
Peroxiredoxin Catalysis at Atomic Resolution.
Structure. 2016 Oct 4;24(10):1668-1678. doi: 10.1016/j.str.2016.07.012. Epub 2016 Sep 1.
2
Native state fluctuations in a peroxiredoxin active site match motions needed for catalysis.
Structure. 2022 Feb 3;30(2):278-288.e3. doi: 10.1016/j.str.2021.10.001. Epub 2021 Oct 21.
5
Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling.
Science. 2003 Apr 25;300(5619):650-3. doi: 10.1126/science.1080405.
7
Crystal structure of an archaeal peroxiredoxin from the aerobic hyperthermophilic crenarchaeon Aeropyrum pernix K1.
J Mol Biol. 2005 Nov 25;354(2):317-29. doi: 10.1016/j.jmb.2005.09.006. Epub 2005 Sep 22.
8
Active site C-loop dynamics modulate substrate binding, catalysis, oligomerization, stability, over-oxidation and recycling of 2-Cys Peroxiredoxins.
Free Radic Biol Med. 2018 Apr;118:59-70. doi: 10.1016/j.freeradbiomed.2018.02.027. Epub 2018 Feb 21.
10
Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization.
J Mol Biol. 2010 Sep 10;402(1):194-209. doi: 10.1016/j.jmb.2010.07.022. Epub 2010 Jul 17.

引用本文的文献

1
Modelling the Decamerisation Cycle of PRDX1 and the Inhibition-like Effect on Its Peroxidase Activity.
Antioxidants (Basel). 2023 Sep 1;12(9):1707. doi: 10.3390/antiox12091707.
2
Native state fluctuations in a peroxiredoxin active site match motions needed for catalysis.
Structure. 2022 Feb 3;30(2):278-288.e3. doi: 10.1016/j.str.2021.10.001. Epub 2021 Oct 21.
3
A Bacterial Inflammation Sensor Regulates c-di-GMP Signaling, Adhesion, and Biofilm Formation.
mBio. 2021 Jun 29;12(3):e0017321. doi: 10.1128/mBio.00173-21. Epub 2021 Jun 22.
4
Additive CHARMM36 Force Field for Nonstandard Amino Acids.
J Chem Theory Comput. 2021 Jun 8;17(6):3554-3570. doi: 10.1021/acs.jctc.1c00254. Epub 2021 May 19.
5
Peroxiredoxins wear many hats: Factors that fashion their peroxide sensing personalities.
Redox Biol. 2021 Jun;42:101959. doi: 10.1016/j.redox.2021.101959. Epub 2021 Apr 20.
6
Modifying the resolving cysteine affects the structure and hydrogen peroxide reactivity of peroxiredoxin 2.
J Biol Chem. 2021 Jan-Jun;296:100494. doi: 10.1016/j.jbc.2021.100494. Epub 2021 Mar 2.
7
Dynamics of a Key Conformational Transition in the Mechanism of Peroxiredoxin Sulfinylation.
ACS Catal. 2020 Mar 6;10(5):3326-3339. doi: 10.1021/acscatal.9b04471. Epub 2020 Jan 31.
8
Structural preferences of cysteine sulfinic acid: The sulfinate engages in multiple local interactions with the peptide backbone.
Free Radic Biol Med. 2020 Feb 20;148:96-107. doi: 10.1016/j.freeradbiomed.2019.12.030. Epub 2019 Dec 26.
10
Redox Signaling by Reactive Electrophiles and Oxidants.
Chem Rev. 2018 Sep 26;118(18):8798-8888. doi: 10.1021/acs.chemrev.7b00698. Epub 2018 Aug 27.

本文引用的文献

2
Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling.
Trends Biochem Sci. 2015 Aug;40(8):435-45. doi: 10.1016/j.tibs.2015.05.001. Epub 2015 Jun 9.
4
Tuning of peroxiredoxin catalysis for various physiological roles.
Biochemistry. 2014 Dec 16;53(49):7693-705. doi: 10.1021/bi5013222. Epub 2014 Dec 1.
5
Deconstructing the catalytic efficiency of peroxiredoxin-5 peroxidatic cysteine.
Biochemistry. 2014 Sep 30;53(38):6113-25. doi: 10.1021/bi500389m. Epub 2014 Sep 18.
7
The sensitive balance between the fully folded and locally unfolded conformations of a model peroxiredoxin.
Biochemistry. 2013 Dec 3;52(48):8708-21. doi: 10.1021/bi4011573. Epub 2013 Nov 20.
8
Evaluating peroxiredoxin sensitivity toward inactivation by peroxide substrates.
Methods Enzymol. 2013;527:21-40. doi: 10.1016/B978-0-12-405882-8.00002-7.
9
How good are my data and what is the resolution?
Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1204-14. doi: 10.1107/S0907444913000061. Epub 2013 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验