Zuchi Sabrina, Watanabe Mutsumi, Hubberten Hans-Michael, Bromke Mariusz, Osorio Sonia, Fernie Alisdair R, Celletti Silvia, Paolacci Anna Rita, Catarcione Giulio, Ciaffi Mario, Hoefgen Rainer, Astolfi Stefania
Department of Agricultural and Forestry Sciences (S.Z., S.C., A.R.P., S.A.) and Department for Innovation in Biological, Agrofood, and Forest Systems (G.C., M.C.), University of Tuscia, 01100 Viterbo, Italy;Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14424 Potsdam, Germany (M.W., H.-M.H., M.B., A.R.F., R.H.); andDepartment of Molecular Biology and Biochemistry, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," University of Malaga, Consejo Superior de Investigaciones Científicas, 29071 Malaga, Spain (S.O.).
Department of Agricultural and Forestry Sciences (S.Z., S.C., A.R.P., S.A.) and Department for Innovation in Biological, Agrofood, and Forest Systems (G.C., M.C.), University of Tuscia, 01100 Viterbo, Italy;Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14424 Potsdam, Germany (M.W., H.-M.H., M.B., A.R.F., R.H.); andDepartment of Molecular Biology and Biochemistry, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," University of Malaga, Consejo Superior de Investigaciones Científicas, 29071 Malaga, Spain (S.O.)
Plant Physiol. 2015 Dec;169(4):2624-39. doi: 10.1104/pp.15.00995. Epub 2015 Oct 5.
Plant response mechanisms to deficiency of a single nutrient, such as sulfur (S) or iron (Fe), have been described at agronomic, physiological, biochemical, metabolomics, and transcriptomic levels. However, agroecosystems are often characterized by different scenarios, in which combined nutrient deficiencies are likely to occur. Soils are becoming depleted for S, whereas Fe, although highly abundant in the soil, is poorly available for uptake because of its insolubility in the soil matrix. To this end, earlier reports showed that a limited S availability reduces Fe uptake and that Fe deficiency results in the modulation of sulfate uptake and assimilation. However, the mechanistic basis of this interaction remains largely unknown. Metabolite profiling of tomato (Solanum lycopersicum) shoots and roots from plants exposed to Fe, S, and combined Fe and S deficiency was performed to improve the understanding of the S-Fe interaction through the identification of the main players in the considered pathways. Distinct changes were revealed under the different nutritional conditions. Furthermore, we investigated the development of the Fe deficiency response through the analysis of expression of ferric chelate reductase, iron-regulated transporter, and putative transcription factor genes and plant sulfate uptake and mobilization capacity by analyzing the expression of genes encoding sulfate transporters (STs) of groups 1, 2, and 4 (SlST1.1, SlST1.2, SlST2.1, SlST2.2, and SlST4.1). We identified a high degree of common and even synergistic response patterns as well as nutrient-specific responses. The results are discussed in the context of current models of nutrient deficiency responses in crop plants.
植物对单一养分缺乏(如硫或铁)的响应机制已在农艺学、生理学、生物化学、代谢组学和转录组学水平上得到描述。然而,农业生态系统的特点往往是不同的情况,其中可能会出现多种养分联合缺乏的情况。土壤中的硫正在逐渐耗尽,而铁虽然在土壤中含量很高,但由于其在土壤基质中不溶性,难以被植物吸收利用。为此,早期报告表明,硫供应有限会降低铁的吸收,而缺铁会导致硫酸盐吸收和同化的调节。然而,这种相互作用的机制基础在很大程度上仍然未知。对暴露于铁、硫以及铁和硫联合缺乏条件下的番茄(Solanum lycopersicum)地上部和根部进行代谢物谱分析,以通过确定相关途径中的主要参与者来增进对硫-铁相互作用的理解。在不同的营养条件下发现了明显的变化。此外,我们通过分析铁螯合还原酶、铁调节转运蛋白和假定转录因子基因的表达来研究缺铁响应的发展,并通过分析第1、2和4组硫酸盐转运蛋白(SlST1.1、SlST1.2、SlST2.1、SlST2.2和SlST4.1)编码基因的表达来研究植物硫酸盐的吸收和动员能力。我们确定了高度的共同甚至协同响应模式以及养分特异性响应。本文将在作物植物养分缺乏响应的当前模型背景下对结果进行讨论。