Department of Mechanical Engineering, Materials Science and Engineering Program, and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA.
International Center for Material Nanoarchitectonics (MANA), National Institute for Materials Science, Tsukuba, 305-0044, Japan.
Nanoscale. 2015 Dec 28;7(48):20391-6. doi: 10.1039/c5nr05645d.
Moiré nanosphere lithography (MNSL), which features the relative in-plane rotation between two layers of self-assembled monodisperse nanospheres as masks, provides a cost-effective approach for creating moiré patterns on generic substrates. In this work, we experimentally and numerically investigate a series of moiré metasurfaces by MNSL. Due to the variety of gradient plasmonic nanostructures in arrays, single moiré metasurfaces can support multiple localized surface plasmon (LSP) modes with a wide range of resonant wavelengths from ∼600 nm to ∼4200 nm. We analyze the origin of the LSP modes based on the optical spectra and near-field electromagnetic distributions. In addition, we fabricate and analyze the metasurfaces with high-density nanogap structures. These nanogap structures support plasmonic gap modes with significant field enhancements. With their tunable multiband optical responses from visible to near-infrared to mid-infrared regimes, these moiré metasurfaces are applicable for ultrabroadband absorbers, multiband surface-enhanced infrared and Raman spectroscopy, and broadband single-molecule spectroscopy.
Moiré 纳米球光刻(MNSL),其特点是两层自组装单分散纳米球作为掩模的相对面内旋转,为在普通衬底上产生莫尔图案提供了一种具有成本效益的方法。在这项工作中,我们通过 MNSL 实验和数值研究了一系列莫尔超表面。由于阵列中梯度等离子体纳米结构的多样性,单个莫尔超表面可以支持多个局域表面等离子体(LSP)模式,其共振波长范围从 ∼600nm 到 ∼4200nm。我们基于光学光谱和近场电磁分布分析了 LSP 模式的起源。此外,我们还制造和分析了具有高密度纳米间隙结构的超表面。这些纳米间隙结构支持具有显著场增强的等离子体间隙模式。这些莫尔超表面具有从可见光到近红外到中红外波段的可调谐多波段光学响应,适用于超宽带吸收器、多波段表面增强红外和拉曼光谱以及宽带单分子光谱。