IEEE Trans Pattern Anal Mach Intell. 2015 Nov;37(11):2178-92. doi: 10.1109/TPAMI.2015.2400465.
This paper addresses the problem of range-stereo fusion, for the construction of high-resolution depth maps. In particular, we combine low-resolution depth data with high-resolution stereo data, in a maximum a posteriori (MAP) formulation. Unlike existing schemes that build on MRF optimizers, we infer the disparity map from a series of local energy minimization problems that are solved hierarchically, by growing sparse initial disparities obtained from the depth data. The accuracy of the method is not compromised, owing to three properties of the data-term in the energy function. First, it incorporates a new correlation function that is capable of providing refined correlations and disparities, via subpixel correction. Second, the correlation scores rely on an adaptive cost aggregation step, based on the depth data. Third, the stereo and depth likelihoods are adaptively fused, based on the scene texture and camera geometry. These properties lead to a more selective growing process which, unlike previous seed-growing methods, avoids the tendency to propagate incorrect disparities. The proposed method gives rise to an intrinsically efficient algorithm, which runs at 3FPS on 2.0 MP images on a standard desktop computer. The strong performance of the new method is established both by quantitative comparisons with state-of-the-art methods, and by qualitative comparisons using real depth-stereo data-sets.
本文针对构建高分辨率深度图的范围立体融合问题进行了研究。特别是,我们以最大后验(MAP)公式的形式,将低分辨率深度数据与高分辨率立体数据相结合。与基于马尔可夫随机场(MRF)优化器的现有方案不同,我们从一系列局部能量最小化问题推断出视差图,这些问题通过从深度数据中获得的稀疏初始视差进行分层逐步解决。该方法的准确性不受影响,这归因于能量函数中数据项的三个特性。首先,它采用了新的相关函数,通过亚像素校正提供更精细的相关和视差。其次,相关得分依赖于基于深度数据的自适应代价聚合步骤。第三,立体和深度似然度基于场景纹理和相机几何自适应融合。这些特性导致了一个更具选择性的生长过程,与之前的种子生长方法不同,它避免了传播错误视差的趋势。所提出的方法产生了一种内在高效的算法,它在标准台式计算机上以 3FPS 的速度运行 2MP 图像。新方法的强大性能通过与最先进方法的定量比较以及使用真实深度立体数据集的定性比较得到了验证。