Suppr超能文献

从稀疏样本中进行深度重建:表示、算法和采样。

Depth reconstruction from sparse samples: representation, algorithm, and sampling.

出版信息

IEEE Trans Image Process. 2015 Jun;24(6):1983-96. doi: 10.1109/TIP.2015.2409551. Epub 2015 Mar 6.

Abstract

The rapid development of 3D technology and computer vision applications has motivated a thrust of methodologies for depth acquisition and estimation. However, existing hardware and software acquisition methods have limited performance due to poor depth precision, low resolution, and high computational cost. In this paper, we present a computationally efficient method to estimate dense depth maps from sparse measurements. There are three main contributions. First, we provide empirical evidence that depth maps can be encoded much more sparsely than natural images using common dictionaries, such as wavelets and contourlets. We also show that a combined wavelet-contourlet dictionary achieves better performance than using either dictionary alone. Second, we propose an alternating direction method of multipliers (ADMM) for depth map reconstruction. A multiscale warm start procedure is proposed to speed up the convergence. Third, we propose a two-stage randomized sampling scheme to optimally choose the sampling locations, thus maximizing the reconstruction performance for a given sampling budget. Experimental results show that the proposed method produces high-quality dense depth estimates, and is robust to noisy measurements. Applications to real data in stereo matching are demonstrated.

摘要

三维技术和计算机视觉应用的快速发展推动了深度获取和估计方法的发展。然而,现有的硬件和软件采集方法由于深度精度差、分辨率低和计算成本高,性能有限。在本文中,我们提出了一种从稀疏测量中估计密集深度图的计算效率方法。主要有三个贡献。首先,我们提供了经验证据,表明使用常见字典(如小波和轮廓波),深度图可以比自然图像更稀疏地编码。我们还表明,联合使用小波-轮廓波字典比单独使用任何一个字典都能获得更好的性能。其次,我们提出了一种用于深度图重建的交替方向乘子法 (ADMM)。提出了一种多尺度热身程序来加速收敛。第三,我们提出了一种两阶段随机抽样方案,以最优地选择采样位置,从而在给定的采样预算下最大限度地提高重建性能。实验结果表明,所提出的方法产生了高质量的密集深度估计,并且对噪声测量具有鲁棒性。演示了在立体匹配中对真实数据的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验