Yousefi Siamak, Goldbaum Michael H, Varnousfaderani Ehsan S, Belghith Akram, Jung Tzyy-Ping, Medeiros Felipe A, Zangwill Linda M, Weinreb Robert N, Liebmann Jeffrey M, Girkin Christopher A, Bowd Christopher
Hamilton Glaucoma Center and the Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.
Institute for Neural Computation and Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA.
J Biomed Inform. 2015 Dec;58:96-103. doi: 10.1016/j.jbi.2015.09.019. Epub 2015 Oct 9.
Detecting glaucomatous progression is an important aspect of glaucoma management. The assessment of longitudinal series of visual fields, measured using Standard Automated Perimetry (SAP), is considered the reference standard for this effort. We seek efficient techniques for determining progression from longitudinal visual fields by formulating the problem as an optimization framework, learned from a population of glaucoma data. The longitudinal data from each patient's eye were used in a convex optimization framework to find a vector that is representative of the progression direction of the sample population, as a whole. Post-hoc analysis of longitudinal visual fields across the derived vector led to optimal progression (change) detection. The proposed method was compared to recently described progression detection methods and to linear regression of instrument-defined global indices, and showed slightly higher sensitivities at the highest specificities than other methods (a clinically desirable result). The proposed approach is simpler, faster, and more efficient for detecting glaucomatous changes, compared to our previously proposed machine learning-based methods, although it provides somewhat less information. This approach has potential application in glaucoma clinics for patient monitoring and in research centers for classification of study participants.
检测青光眼进展是青光眼管理的一个重要方面。使用标准自动视野计(SAP)测量的纵向视野系列评估被认为是这项工作的参考标准。我们通过将问题表述为一个优化框架,从大量青光眼数据中学习,来寻找从纵向视野确定进展的有效技术。来自每个患者眼睛的纵向数据被用于一个凸优化框架中,以找到一个代表整个样本群体进展方向的向量。对沿着导出向量的纵向视野进行事后分析导致了最佳进展(变化)检测。将所提出的方法与最近描述的进展检测方法以及仪器定义的全局指标的线性回归进行了比较,结果表明,在最高特异性下,该方法的灵敏度略高于其他方法(这是一个临床期望的结果)。与我们之前提出的基于机器学习的方法相比,所提出的方法在检测青光眼变化方面更简单、更快且更有效,尽管它提供的信息略少。这种方法在青光眼诊所用于患者监测以及在研究中心用于研究参与者分类方面具有潜在应用价值。