文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的初始视野测试预测快速青光眼进展风险的眼睛。

Predicting eyes at risk for rapid glaucoma progression based on an initial visual field test using machine learning.

机构信息

Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.

Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States of America.

出版信息

PLoS One. 2021 Apr 16;16(4):e0249856. doi: 10.1371/journal.pone.0249856. eCollection 2021.


DOI:10.1371/journal.pone.0249856
PMID:33861775
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8051770/
Abstract

OBJECTIVE: To assess whether machine learning algorithms (MLA) can predict eyes that will undergo rapid glaucoma progression based on an initial visual field (VF) test. DESIGN: Retrospective analysis of longitudinal data. SUBJECTS: 175,786 VFs (22,925 initial VFs) from 14,217 patients who completed ≥5 reliable VFs at academic glaucoma centers were included. METHODS: Summary measures and reliability metrics from the initial VF and age were used to train MLA designed to predict the likelihood of rapid progression. Additionally, the neural network model was trained with point-wise threshold data in addition to summary measures, reliability metrics and age. 80% of eyes were used for a training set and 20% were used as a test set. MLA test set performance was assessed using the area under the receiver operating curve (AUC). Performance of models trained on initial VF data alone was compared to performance of models trained on data from the first two VFs. MAIN OUTCOME MEASURES: Accuracy in predicting future rapid progression defined as MD worsening more than 1 dB/year. RESULTS: 1,968 eyes (8.6%) underwent rapid progression. The support vector machine model (AUC 0.72 [95% CI 0.70-0.75]) most accurately predicted rapid progression when trained on initial VF data. Artificial neural network, random forest, logistic regression and naïve Bayes classifiers produced AUC of 0.72, 0.70, 0.69, 0.68 respectively. Models trained on data from the first two VFs performed no better than top models trained on the initial VF alone. Based on the odds ratio (OR) from logistic regression and variable importance plots from the random forest model, older age (OR: 1.41 per 10 year increment [95% CI: 1.34 to 1.08]) and higher pattern standard deviation (OR: 1.31 per 5-dB increment [95% CI: 1.18 to 1.46]) were the variables in the initial VF most strongly associated with rapid progression. CONCLUSIONS: MLA can be used to predict eyes at risk for rapid progression with modest accuracy based on an initial VF test. Incorporating additional clinical data to the current model may offer opportunities to predict patients most likely to rapidly progress with even greater accuracy.

摘要

目的:评估机器学习算法(MLA)是否可以基于初始视野(VF)测试预测即将快速进展的眼睛。

设计:纵向数据的回顾性分析。

受试者:纳入了来自 14217 名患者的 175786 份 VF(22925 份初始 VF),这些患者在学术青光眼中心完成了≥5 次可靠的 VF。

方法:使用初始 VF 的汇总测量值和可靠性指标以及年龄,训练旨在预测快速进展可能性的 MLA。此外,神经网络模型还使用逐点阈值数据以及汇总测量值、可靠性指标和年龄进行了训练。80%的眼睛用于训练集,20%用于测试集。使用接收器工作特征曲线下的面积(AUC)评估 MLA 测试集的性能。比较了仅基于初始 VF 数据训练的模型与基于前两个 VF 数据训练的模型的性能。

主要观察指标:预测未来快速进展的准确性,定义为 MD 恶化超过 1 dB/年。

结果:1968 只眼睛(8.6%)发生了快速进展。支持向量机模型(AUC 0.72[95%CI 0.70-0.75])在基于初始 VF 数据进行训练时最准确地预测了快速进展。人工神经网络、随机森林、逻辑回归和朴素贝叶斯分类器的 AUC 分别为 0.72、0.70、0.69、0.68。基于前两个 VF 的数据进行训练的模型并不比仅基于初始 VF 进行训练的最佳模型表现更好。基于逻辑回归的比值比(OR)和随机森林模型的变量重要性图,初始 VF 中年龄较大(OR:每增加 10 岁增加 1.41[95%CI:1.34 至 1.08])和模式标准差较高(OR:每增加 5dB 增加 1.31[95%CI:1.18 至 1.46])是与快速进展最相关的变量。

结论:基于初始 VF 测试,MLA 可用于预测具有中等准确性的快速进展风险的眼睛。将额外的临床数据纳入当前模型可能为更准确地预测快速进展的患者提供机会。

相似文献

[1]
Predicting eyes at risk for rapid glaucoma progression based on an initial visual field test using machine learning.

PLoS One. 2021

[2]
Assessing Glaucoma Progression Using Machine Learning Trained on Longitudinal Visual Field and Clinical Data.

Ophthalmology. 2021-7

[3]
Forecasting Risk of Future Rapid Glaucoma Worsening Using Early Visual Field, OCT, and Clinical Data.

Ophthalmol Glaucoma. 2023

[4]
Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma.

Ophthalmology. 2017-11-2

[5]
Predicting Visual Field Worsening with Longitudinal OCT Data Using a Gated Transformer Network.

Ophthalmology. 2023-8

[6]
A multi-label transformer-based deep learning approach to predict focal visual field progression.

Graefes Arch Clin Exp Ophthalmol. 2024-7

[7]
Machine-Identified Patterns of Visual Field Loss and an Association with Rapid Progression in the Ocular Hypertension Treatment Study.

Ophthalmology. 2022-12

[8]
Combining optical coherence tomography with visual field data to rapidly detect disease progression in glaucoma: a diagnostic accuracy study.

Health Technol Assess. 2018-1

[9]
Opportunities for Improving Glaucoma Clinical Trials via Deep Learning-Based Identification of Patients with Low Visual Field Variability.

Ophthalmol Glaucoma. 2024

[10]
A deep learning model incorporating spatial and temporal information successfully detects visual field worsening using a consensus based approach.

Sci Rep. 2023-1-19

引用本文的文献

[1]
Fusing Structural Phenotypes with Functional Data for Early Prediction of Primary Angle-Closure Glaucoma Progression.

ArXiv. 2025-8-19

[2]
Rapidly Progressing Glaucoma: Clinical, Structural, and Socioeconomic Drivers of Treatment Escalation.

medRxiv. 2025-6-20

[3]
Artificial Intelligence in Glaucoma: Advances in Diagnosis, Progression Forecasting, and Surgical Outcome Prediction.

Int J Mol Sci. 2025-5-8

[4]
Big data in visual field testing for glaucoma.

Taiwan J Ophthalmol. 2024-9-13

[5]
Application of artificial intelligence in glaucoma care: An updated review.

Taiwan J Ophthalmol. 2024-9-13

[6]
The use of artificial neural networks in studying the progression of glaucoma.

Sci Rep. 2024-8-23

[7]
Integrating Deep Learning with Electronic Health Records for Early Glaucoma Detection: A Multi-Dimensional Machine Learning Approach.

Bioengineering (Basel). 2024-6-7

[8]
Retinal Nerve Fiber Layer Damage Assessment in Glaucomatous Eyes Using Retinal Retardance Measured by Polarization-Sensitive Optical Coherence Tomography.

Transl Vis Sci Technol. 2024-5-1

[9]
Clinical Perspectives on the Use of Computer Vision in Glaucoma Screening.

Medicina (Kaunas). 2024-3-2

[10]
Deep learning-based identification of eyes at risk for glaucoma surgery.

Sci Rep. 2024-1-5

本文引用的文献

[1]
Baseline Age and Mean Deviation Affect the Rate of Glaucomatous Vision Loss.

J Glaucoma. 2020-1

[2]
Deep learning in ophthalmology: The technical and clinical considerations.

Prog Retin Eye Res. 2019-4-29

[3]
Forecasting future Humphrey Visual Fields using deep learning.

PLoS One. 2019-4-5

[4]
Artificial intelligence in glaucoma.

Curr Opin Ophthalmol. 2019-3

[5]
Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network.

BMC Med Imaging. 2018-10-4

[6]
Automatic Identification of Glaucoma Using Deep Learning Methods.

Stud Health Technol Inform. 2017

[7]
Evaluation of Visual Field and Imaging Outcomes for Glaucoma Clinical Trials (An American Ophthalomological Society Thesis).

Trans Am Ophthalmol Soc. 2017-8-22

[8]
Hybrid Deep Learning on Single Wide-field Optical Coherence tomography Scans Accurately Classifies Glaucoma Suspects.

J Glaucoma. 2017-12

[9]
Evidence-based Criteria for Assessment of Visual Field Reliability.

Ophthalmology. 2017-11

[10]
Detecting Change Using Standard Global Perimetric Indices in Glaucoma.

Am J Ophthalmol. 2017-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索