使用卷积神经网络和随机视图聚合改进计算机辅助检测
Improving Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation.
作者信息
Roth Holger R, Lu Le, Liu Jiamin, Yao Jianhua, Seff Ari, Cherry Kevin, Kim Lauren, Summers Ronald M
出版信息
IEEE Trans Med Imaging. 2016 May;35(5):1170-81. doi: 10.1109/TMI.2015.2482920. Epub 2015 Sep 28.
Automated computer-aided detection (CADe) has been an important tool in clinical practice and research. State-of-the-art methods often show high sensitivities at the cost of high false-positives (FP) per patient rates. We design a two-tiered coarse-to-fine cascade framework that first operates a candidate generation system at sensitivities ∼ 100% of but at high FP levels. By leveraging existing CADe systems, coordinates of regions or volumes of interest (ROI or VOI) are generated and function as input for a second tier, which is our focus in this study. In this second stage, we generate 2D (two-dimensional) or 2.5D views via sampling through scale transformations, random translations and rotations. These random views are used to train deep convolutional neural network (ConvNet) classifiers. In testing, the ConvNets assign class (e.g., lesion, pathology) probabilities for a new set of random views that are then averaged to compute a final per-candidate classification probability. This second tier behaves as a highly selective process to reject difficult false positives while preserving high sensitivities. The methods are evaluated on three data sets: 59 patients for sclerotic metastasis detection, 176 patients for lymph node detection, and 1,186 patients for colonic polyp detection. Experimental results show the ability of ConvNets to generalize well to different medical imaging CADe applications and scale elegantly to various data sets. Our proposed methods improve performance markedly in all cases. Sensitivities improved from 57% to 70%, 43% to 77%, and 58% to 75% at 3 FPs per patient for sclerotic metastases, lymph nodes and colonic polyps, respectively.
自动化计算机辅助检测(CADe)一直是临床实践和研究中的重要工具。先进的方法通常以高假阳性(FP)率为代价显示出高灵敏度。我们设计了一个两层的从粗到细的级联框架,该框架首先运行一个候选生成系统,其灵敏度约为100%,但假阳性水平较高。通过利用现有的CADe系统,生成感兴趣区域(ROI)或感兴趣体积(VOI)的坐标,并将其作为第二层的输入,这是我们在本研究中的重点。在第二阶段,我们通过尺度变换、随机平移和旋转进行采样来生成二维(2D)或2.5D视图。这些随机视图用于训练深度卷积神经网络(ConvNet)分类器。在测试中,ConvNet为一组新的随机视图分配类别(例如,病变、病理)概率,然后对这些概率进行平均以计算每个候选对象的最终分类概率。第二层表现为一个高度选择性的过程,在保持高灵敏度的同时拒绝困难的假阳性。这些方法在三个数据集上进行了评估:用于硬化性转移检测的59例患者、用于淋巴结检测的176例患者和用于结肠息肉检测的1186例患者。实验结果表明,ConvNet能够很好地推广到不同的医学影像CADe应用中,并能优雅地扩展到各种数据集。我们提出的方法在所有情况下都显著提高了性能。对于硬化性转移、淋巴结和结肠息肉,在每位患者3个假阳性的情况下,灵敏度分别从57%提高到70%、从43%提高到77%、从58%提高到75%。
相似文献
IEEE Trans Med Imaging. 2016-5
Med Image Comput Comput Assist Interv. 2014
Int J Comput Assist Radiol Surg. 2023-4
引用本文的文献
BMC Med Inform Decis Mak. 2025-4-11
Cogn Neurodyn. 2024-12
J Natl Cancer Cent. 2022-10-11
Front Neurosci. 2024-4-18
Sensors (Basel). 2024-1-31
本文引用的文献
Inf Process Med Imaging. 2015
Inf Process Med Imaging. 2015
Med Image Comput Comput Assist Interv. 2014
Med Image Comput Comput Assist Interv. 2014
Biomed Eng Online. 2014-4-8
Med Image Comput Comput Assist Interv. 2013
Med Image Comput Comput Assist Interv. 2013
Nature. 2014-1-9
Radiology. 2013-2-28