Suppr超能文献

使用深度卷积神经网络从超声图像预测良性甲状腺结节微波消融的疗效。

Predicting the efficacy of microwave ablation of benign thyroid nodules from ultrasound images using deep convolutional neural networks.

作者信息

Agyekum Enock Adjei, Wang Yu-Guo, Issaka Eliasu, Ren Yong-Zhen, Tan Gongxun, Shen Xiangjun, Qian Xiao-Qin

机构信息

Department of Ultrasound, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China.

School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China.

出版信息

BMC Med Inform Decis Mak. 2025 Apr 11;25(1):161. doi: 10.1186/s12911-025-02989-7.

Abstract

BACKGROUND

Thyroid nodules are frequent in clinical settings, and their diagnosis in adults is growing, with some persons experiencing symptoms. Ultrasound-guided thermal ablation can shrink nodules and alleviate discomfort. Because the degree and rate of lesion absorption vary greatly between individuals, there is no reliable model for predicting the therapeutic efficacy of thermal ablation.

METHODS

Five convolutional neural network models including VGG19, Resnet 50, EfficientNetB1, EfficientNetB0, and InceptionV3, pre-trained with ImageNet, were compared for predicting the efficacy of ultrasound-guided microwave ablation (MWA) for benign thyroid nodules using ultrasound data. The patients were randomly assigned to one of two data sets: training (70%) or validation (30%). Accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve (AUC) were all used to assess predictive performance.

RESULTS

In the validation set, fine-tuned EfficientNetB1 performed best, with an AUC of 0.85 and an ACC of 0.79.

CONCLUSIONS

The study found that our deep learning model accurately predicts nodules with VRR < 50% after a single MWA session. Indeed, when thermal therapies compete with surgery, anticipating which nodules will be poor responders provides useful information that may assist physicians and patients determine whether thermal ablation or surgery is the preferable option. This was a preliminary study of deep learning, with a gap in actual clinical applications. As a result, more in-depth study should be undertaken to develop deep-learning models that can better help clinics. Prospective studies are expected to generate high-quality evidence and improve clinical performance in subsequent research.

摘要

背景

甲状腺结节在临床中很常见,成人甲状腺结节的诊断数量不断增加,部分患者出现症状。超声引导下热消融可缩小结节并缓解不适。由于个体间病变吸收的程度和速度差异很大,目前尚无可靠模型预测热消融的治疗效果。

方法

比较5种预先在ImageNet上训练的卷积神经网络模型,即VGG19、Resnet 50、EfficientNetB1、EfficientNetB0和InceptionV3,利用超声数据预测超声引导下微波消融(MWA)治疗良性甲状腺结节的疗效。患者被随机分配到两个数据集之一:训练集(70%)或验证集(30%)。采用准确率、灵敏度、特异度、阳性预测值、阴性预测值和曲线下面积(AUC)评估预测性能。

结果

在验证集中,微调后的EfficientNetB1表现最佳,AUC为0.85,ACC为0.79。

结论

该研究发现,我们的深度学习模型能够准确预测单次MWA治疗后体积缩小率(VRR)<50%的结节。实际上,当热消融疗法与手术竞争时,预测哪些结节治疗效果不佳可提供有用信息,有助于医生和患者确定热消融或手术哪种是更优选择。这是深度学习的初步研究,在实际临床应用方面存在差距。因此,应开展更深入的研究以开发能更好帮助临床的深度学习模型。预计前瞻性研究将产生高质量证据并在后续研究中改善临床效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/281f/11987319/a5821b870c36/12911_2025_2989_Fig1_HTML.jpg

相似文献

2
Ultrasound-based radiomics to predict the volume reduction rate of benign thyroid nodules after microwave ablation.
Endocrine. 2025 Apr;88(1):162-174. doi: 10.1007/s12020-024-04125-3. Epub 2024 Dec 5.
3
Efficacy of microwave ablation in the treatment of large benign thyroid nodules: a multi-center study.
Eur Radiol. 2024 Oct;34(10):6852-6861. doi: 10.1007/s00330-024-10614-w. Epub 2024 Mar 28.
4
A prognostic model for thermal ablation of benign thyroid nodules based on interpretable machine learning.
Front Endocrinol (Lausanne). 2024 Aug 19;15:1433192. doi: 10.3389/fendo.2024.1433192. eCollection 2024.
7
A study on the efficacy of microwave ablation for benign thyroid nodules and related influencing factors.
Int J Hyperthermia. 2021;38(1):1469-1475. doi: 10.1080/02656736.2021.1988151.
8
US-guided percutaneous microwave ablation for the treatment of benign thyroid nodules.
Endocr J. 2017 Nov 29;64(11):1079-1085. doi: 10.1507/endocrj.EJ17-0152. Epub 2017 Aug 29.

本文引用的文献

1
A prognostic model for thermal ablation of benign thyroid nodules based on interpretable machine learning.
Front Endocrinol (Lausanne). 2024 Aug 19;15:1433192. doi: 10.3389/fendo.2024.1433192. eCollection 2024.
2
Attention mechanism and mixup data augmentation for classification of COVID-19 Computed Tomography images.
J King Saud Univ Comput Inf Sci. 2022 Sep;34(8):6199-6207. doi: 10.1016/j.jksuci.2021.07.005. Epub 2021 Jul 15.
3
A systematic review of machine learning based thyroid tumor characterisation using ultrasonographic images.
J Ultrasound. 2024 Jun;27(2):209-224. doi: 10.1007/s40477-023-00850-z. Epub 2024 Mar 27.
4
Deep learning radiomics based prediction of axillary lymph node metastasis in breast cancer.
NPJ Breast Cancer. 2024 Mar 12;10(1):22. doi: 10.1038/s41523-024-00628-4.
6
The value of deep neural networks in the pathological classification of thyroid tumors.
Diagn Pathol. 2023 Aug 19;18(1):95. doi: 10.1186/s13000-023-01380-2.
9
Chronic kidney disease prediction based on machine learning algorithms.
J Pathol Inform. 2023 Jan 12;14:100189. doi: 10.1016/j.jpi.2023.100189. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验