文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于超声的甲状腺滤泡状癌分类:使用带迁移学习的深度卷积神经网络

Ultrasound-based classification of follicular thyroid Cancer using deep convolutional neural networks with transfer learning.

作者信息

Agyekum Enock Adjei, Yuzhi Zhang, Fang Yu, Agyekum Doris Nti, Wang Xian, Issaka Eliasu, Li CuiRong, Shen Xiangjun, Qian Xiaoqin, Wu Xinping

机构信息

Department of Ultrasound, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, China.

School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):21708. doi: 10.1038/s41598-025-05551-7.


DOI:10.1038/s41598-025-05551-7
PMID:40592967
Abstract

This study aimed to develop and validate convolutional neural network (CNN) models for distinguishing follicular thyroid carcinoma (FTC) from follicular thyroid adenoma (FTA). Additionally, this current study compared the performance of CNN models with the American College of Radiology Thyroid Imaging Reporting and Data System (ACR-TIRADS) and Chinese Thyroid Imaging Reporting and Data System (C-TIRADS) ultrasound-based malignancy risk stratification systems. A total of 327 eligible patients with FTC and FTA who underwent preoperative thyroid ultrasound examination were retrospectively enrolled between August 2017, and August 2024. Patients were randomly assigned to a training cohort (n = 263) and a test cohort (n = 64) in an 8:2 ratio using stratified sampling. Five CNN models, including VGG16, ResNet101, MobileNetV2, ResNet152, and ResNet50, pre-trained with ImageNet, were developed and tested to distinguish FTC from FTA. The CNN models exhibited good performance, yielding areas under the receiver operating characteristic curve (AUC) ranging from 0.64 to 0.77. The ResNet152 model demonstrated the highest AUC (0.77; 95% CI, 0.67-0.87) for distinguishing between FTC and FTA. Decision curve and calibration curve analyses demonstrated the models' favorable clinical value and calibration. Furthermore, when comparing the performance of the developed models with that of the C-TIRADS and ACR-TIRADS systems, the models developed in this study demonstrated superior performance. This can potentially guide appropriate management of FTC in patients with follicular neoplasms.

摘要

本研究旨在开发并验证用于区分甲状腺滤泡癌(FTC)和甲状腺滤泡性腺瘤(FTA)的卷积神经网络(CNN)模型。此外,本研究还将CNN模型的性能与美国放射学会甲状腺影像报告和数据系统(ACR-TIRADS)以及中国甲状腺影像报告和数据系统(C-TIRADS)基于超声的恶性风险分层系统进行了比较。2017年8月至2024年8月期间,共回顾性纳入了327例接受术前甲状腺超声检查的符合条件的FTC和FTA患者。采用分层抽样的方法,将患者以8:2的比例随机分配到训练队列(n = 263)和测试队列(n = 64)。开发并测试了五个使用ImageNet预训练的CNN模型,包括VGG16、ResNet101、MobileNetV2、ResNet152和ResNet50,以区分FTC和FTA。这些CNN模型表现出良好的性能,受试者操作特征曲线(AUC)下面积范围为0.64至0.77。ResNet152模型在区分FTC和FTA方面表现出最高的AUC(0.77;95%CI,0.67 - 0.87)。决策曲线和校准曲线分析证明了这些模型具有良好的临床价值和校准效果。此外,在将开发的模型与C-TIRADS和ACR-TIRADS系统的性能进行比较时,本研究开发的模型表现更优。这可能有助于指导对滤泡性肿瘤患者的FTC进行适当管理。

相似文献

[1]
Ultrasound-based classification of follicular thyroid Cancer using deep convolutional neural networks with transfer learning.

Sci Rep. 2025-7-1

[2]
Diagnostic Performance of Six Ultrasound Risk Stratification Systems for Thyroid Nodules: A Systematic Review and Network Meta-Analysis.

AJR Am J Roentgenol. 2023-6

[3]
Deep Learning Based on Ultrasound Images Differentiates Parotid Gland Pleomorphic Adenomas and Warthin Tumors.

Ultrason Imaging. 2025-3-29

[4]
A multicenter diagnostic study of thyroid nodule with Hashimoto's thyroiditis enabled by Hashimoto's thyroiditis nodule-artificial intelligence model.

Eur Radiol. 2025-2-13

[5]
Diagnostic efficiency among Eu-/C-/ACR-TIRADS and S-Detect for thyroid nodules: a systematic review and network meta-analysis.

Front Endocrinol (Lausanne). 2023

[6]
Diagnostic performance of six ultrasound-based risk stratification systems in thyroid follicular neoplasm: A retrospective multi-center study.

Front Oncol. 2022-10-20

[7]
Comparison of the diagnostic performance of three ultrasound thyroid nodule risk stratification systems for follicular thyroid neoplasm: K-TIRADS, ACR -TIRADS and C-TIRADS.

Clin Hemorheol Microcirc. 2023

[8]
Age-stratified deep learning model for thyroid tumor classification: a multicenter diagnostic study.

Eur Radiol. 2025-2-4

[9]
Multimodal ultrasound radiomics model combined with clinical model for differentiating follicular thyroid adenoma from carcinoma.

BMC Med Imaging. 2025-5-5

[10]
Application Value of Deep Learning-Based AI Model in the Classification of Breast Nodules.

Br J Hosp Med (Lond). 2025-6-25

本文引用的文献

[1]
Multimodal GPT model for assisting thyroid nodule diagnosis and management.

NPJ Digit Med. 2025-5-3

[2]
Diagnostic significance of ultrasound characteristics in discriminating follicular thyroid carcinoma from adenoma.

BMC Med Imaging. 2024-11-5

[3]
Attention mechanism and mixup data augmentation for classification of COVID-19 Computed Tomography images.

J King Saud Univ Comput Inf Sci. 2022-9

[4]
Role of Ultrasound and Ultrasound-Based Prediction Model in Differentiating Follicular Thyroid Carcinoma From Follicular Thyroid Adenoma.

J Ultrasound Med. 2024-8

[5]
AI diagnosis of Bethesda category IV thyroid nodules.

iScience. 2023-10-4

[6]
Diagnosis of thyroid micronodules on ultrasound using a deep convolutional neural network.

Sci Rep. 2023-5-4

[7]
RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning.

Radiol Artif Intell. 2022-7-27

[8]
Performance of current ultrasound-based malignancy risk stratification systems for thyroid nodules in patients with follicular neoplasms.

Eur Radiol. 2022-6

[9]
Modified Models for Predicting Malignancy Using Ultrasound Characters Have High Accuracy in Thyroid Nodules With Small Size.

Front Mol Biosci. 2021-11-26

[10]
Thyroid ultrasound image classification using a convolutional neural network.

Ann Transl Med. 2021-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索