文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于最优贝叶斯分类的 RNA-Seq 数据中多变量基因交互作用检测。

Detecting Multivariate Gene Interactions in RNA-Seq Data Using Optimal Bayesian Classification.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2018 Mar-Apr;15(2):484-493. doi: 10.1109/TCBB.2015.2485223. Epub 2015 Oct 1.


DOI:10.1109/TCBB.2015.2485223
PMID:26441451
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4818202/
Abstract

Differential gene expression testing is an analysis commonly applied to RNA-Seq data. These statistical tests identify genes that are significantly different across phenotypes. We extend this testing paradigm to multivariate gene interactions from a classification perspective with the goal to detect novel gene interactions for the phenotypes of interest. This is achieved through our novel computational framework comprised of a hierarchical statistical model of the RNA-Seq processing pipeline and the corresponding optimal Bayesian classifier. Through Markov Chain Monte Carlo sampling and Monte Carlo integration, we compute quantities where no analytical formulation exists. The performance is then illustrated on an expression dataset from a dietary intervention study where we identify gene pairs that have low classification error yet were not identified as differentially expressed. Additionally, we have released the software package to perform OBC classification on RNA-Seq data under an open source license and is available at http://bit.ly/obc_package.

摘要

差异基因表达测试是一种常用于 RNA-Seq 数据的分析方法。这些统计测试可以识别在不同表型之间有显著差异的基因。我们从分类的角度扩展了这个测试范例,以多元基因相互作用为目标,为感兴趣的表型检测新的基因相互作用。这是通过我们的新的计算框架实现的,该框架包括 RNA-Seq 处理管道的分层统计模型和相应的最优贝叶斯分类器。通过马尔可夫链蒙特卡罗抽样和蒙特卡罗积分,我们计算了没有解析公式的数量。然后,我们在一个饮食干预研究的表达数据集上展示了性能,在该数据集上,我们确定了具有低分类错误但未被识别为差异表达的基因对。此外,我们已经发布了一个软件包,用于在开源许可证下对 RNA-Seq 数据执行 OBC 分类,并可在 http://bit.ly/obc_package 上获得。

相似文献

[1]
Detecting Multivariate Gene Interactions in RNA-Seq Data Using Optimal Bayesian Classification.

IEEE/ACM Trans Comput Biol Bioinform. 2015-10-1

[2]
MCMC implementation of the optimal Bayesian classifier for non-Gaussian models: model-based RNA-Seq classification.

BMC Bioinformatics. 2014-12-10

[3]
rSeqNP: a non-parametric approach for detecting differential expression and splicing from RNA-Seq data.

Bioinformatics. 2015-7-1

[4]
NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data.

BMC Bioinformatics. 2013-8-27

[5]
SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.

BMC Bioinformatics. 2016-2-4

[6]
Polyester: simulating RNA-seq datasets with differential transcript expression.

Bioinformatics. 2015-9-1

[7]
Comparative evaluation of gene set analysis approaches for RNA-Seq data.

BMC Bioinformatics. 2014-12-5

[8]
READemption-a tool for the computational analysis of deep-sequencing-based transcriptome data.

Bioinformatics. 2014-8-13

[9]
EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments.

Bioinformatics. 2015-8-15

[10]
Identifying differentially expressed transcripts from RNA-seq data with biological variation.

Bioinformatics. 2012-5-3

引用本文的文献

[1]
Cross study transcriptomic investigation of Alzheimer's brain tissue discoveries and limitations.

Sci Rep. 2025-5-8

[2]
Heuristic Analysis of Genomic Sequence Processing Models for High Efficiency Prediction: A Statistical Perspective.

Curr Genomics. 2022-11-18

[3]
A Nonmathematical Review of Optimal Operator and Experimental Design for Uncertain Scientific Models with Application to Genomics.

Curr Genomics. 2019-1

本文引用的文献

[1]
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.

Genome Biol. 2014

[2]
MCMC implementation of the optimal Bayesian classifier for non-Gaussian models: model-based RNA-Seq classification.

BMC Bioinformatics. 2014-12-10

[3]
HTSeq--a Python framework to work with high-throughput sequencing data.

Bioinformatics. 2015-1-15

[4]
Transcriptional regulation of endothelial arginase 2 by histone deacetylase 2.

Arterioscler Thromb Vasc Biol. 2014-5-15

[5]
Modeling the next generation sequencing sample processing pipeline for the purposes of classification.

BMC Bioinformatics. 2013-10-11

[6]
STAR: ultrafast universal RNA-seq aligner.

Bioinformatics. 2012-10-25

[7]
A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis.

Brief Bioinform. 2012-9-17

[8]
Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks.

Nat Protoc. 2012-3-1

[9]
Analysis for the combination expression of CK20, FABP1 and MUC2 is sensitive for the prediction of peritoneal recurrence in gastric cancer.

Jpn J Clin Oncol. 2011-12-15

[10]
MiR-1 is a tumor suppressor in thyroid carcinogenesis targeting CCND2, CXCR4, and SDF-1alpha.

J Clin Endocrinol Metab. 2011-7-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索