Sciutti Alessandra, Ansuini Caterina, Becchio Cristina, Sandini Giulio
Departments of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia Genoa, Italy.
Departments of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia Genoa, Italy ; Department of Psychology, Centre for Cognitive Science, University of Torino Torino, Italy.
Front Psychol. 2015 Sep 9;6:1362. doi: 10.3389/fpsyg.2015.01362. eCollection 2015.
The ability to interact with other people hinges crucially on the possibility to anticipate how their actions would unfold. Recent evidence suggests that a similar skill may be grounded on the fact that we perform an action differently if different intentions lead it. Human observers can detect these differences and use them to predict the purpose leading the action. Although intention reading from movement observation is receiving a growing interest in research, the currently applied experimental paradigms have important limitations. Here, we describe a new approach to study intention understanding that takes advantage of robots, and especially of humanoid robots. We posit that this choice may overcome the drawbacks of previous methods, by guaranteeing the ideal trade-off between controllability and naturalness of the interactive scenario. Robots indeed can establish an interaction in a controlled manner, while sharing the same action space and exhibiting contingent behaviors. To conclude, we discuss the advantages of this research strategy and the aspects to be taken in consideration when attempting to define which human (and robot) motion features allow for intention reading during social interactive tasks.
与他人互动的能力关键取决于能否预测他们的行为将如何展开。最近的证据表明,类似的技能可能基于这样一个事实,即如果不同的意图导致我们执行一个动作,我们执行该动作的方式会有所不同。人类观察者能够察觉到这些差异,并利用它们来预测导致该动作的目的。尽管从动作观察中解读意图在研究中越来越受到关注,但目前应用的实验范式存在重要局限性。在此,我们描述一种利用机器人,尤其是人形机器人来研究意图理解的新方法。我们认为,这种选择可以通过在交互场景的可控性和自然性之间保证理想的权衡,克服先前方法的缺点。机器人确实能够以可控的方式建立互动,同时共享相同的动作空间并展现出应变行为。最后,我们讨论了这种研究策略的优势,以及在试图确定哪些人类(和机器人)运动特征能够在社交互动任务中实现意图解读时需要考虑的方面。
Front Psychol. 2015-9-9
IEEE Trans Neural Syst Rehabil Eng. 2017-10-16
Front Psychol. 2014-7-24
Front Hum Neurosci. 2012-5-1
Front Neurosci. 2022-10-21
Front Hum Neurosci. 2015-6-19
Front Psychol. 2015-8-17
Comput Methods Programs Biomed. 2023-12
Adv Child Dev Behav. 2009
iScience. 2022-5-25
Soc Cogn Affect Neurosci. 2021-3-24
Sci Rep. 2018-12-14
Front Neurorobot. 2018-7-11
Front Hum Neurosci. 2017-10-30
Restor Neurol Neurosci. 2018
J Neurophysiol. 2015-4-1
PLoS One. 2014-8-25
Front Hum Neurosci. 2013-8-12
Behav Brain Sci. 2013-8
Neuropsychologia. 2012-12-23
Psychol Res. 2011-12-9
Nat Rev Neurosci. 2011-11-3
PLoS One. 2011-9-28
Exp Brain Res. 2011-8-24