文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

ANEMONE:用于人类机器人交互中动作和意图识别的 UX 评估的理论基础。

The ANEMONE: Theoretical Foundations for UX Evaluation of Action and Intention Recognition in Human-Robot Interaction.

机构信息

School of Informatics, University of Skövde, Box 408, 541 28 Skövde, Sweden.

出版信息

Sensors (Basel). 2020 Jul 31;20(15):4284. doi: 10.3390/s20154284.


DOI:10.3390/s20154284
PMID:32752008
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7436001/
Abstract

The coexistence of robots and humans in shared physical and social spaces is expected to increase. A key enabler of high-quality interaction is a mutual understanding of each other's actions and intentions. In this paper, we motivate and present a systematic user experience (UX) evaluation framework of action and intention recognition between humans and robots from a UX perspective, because there is an identified lack of this kind of evaluation methodology. The evaluation framework is packaged into a methodological approach called ANEMONE (action and intention recognition in human robot interaction). ANEMONE has its foundation in cultural-historical activity theory (AT) as the theoretical lens, the seven stages of action model, and user experience (UX) evaluation methodology, which together are useful in motivating and framing the work presented in this paper. The proposed methodological approach of ANEMONE provides guidance on how to measure, assess, and evaluate the mutual recognition of actions and intentions between humans and robots for investigators of UX evaluation. The paper ends with a discussion, addresses future work, and some concluding remarks.

摘要

机器人和人类在共享物理和社会空间中共同存在的情况预计将会增加。高质量交互的关键促成因素是彼此对对方行为和意图的相互理解。在本文中,我们从用户体验 (UX) 的角度出发,提出并论证了一种用于人类与机器人之间行为和意图识别的系统 UX 评估框架,因为目前缺少这种评估方法。该评估框架被打包成一种名为“ANEMONE(人机交互中的动作和意图识别)”的方法。ANEMONE 的基础是文化历史活动理论 (AT),作为理论视角,以及动作模型的七个阶段和用户体验 (UX) 评估方法,这些共同有助于激发和构建本文中的工作。所提出的 ANEMONE 方法提供了关于如何衡量、评估和评估人类与机器人之间动作和意图相互识别的指导,以供 UX 评估的研究人员使用。本文最后进行了讨论,提出了未来的工作,并作了一些总结。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a8/7436001/7e945032323d/sensors-20-04284-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a8/7436001/1d70679f6730/sensors-20-04284-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a8/7436001/9e31f5c3941f/sensors-20-04284-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a8/7436001/0b9a7e8802b4/sensors-20-04284-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a8/7436001/7bda87ae5c81/sensors-20-04284-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a8/7436001/54170197fab5/sensors-20-04284-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a8/7436001/cbdc927aff56/sensors-20-04284-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a8/7436001/7e945032323d/sensors-20-04284-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a8/7436001/1d70679f6730/sensors-20-04284-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a8/7436001/9e31f5c3941f/sensors-20-04284-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a8/7436001/0b9a7e8802b4/sensors-20-04284-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a8/7436001/7bda87ae5c81/sensors-20-04284-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a8/7436001/54170197fab5/sensors-20-04284-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a8/7436001/cbdc927aff56/sensors-20-04284-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a8/7436001/7e945032323d/sensors-20-04284-g007.jpg

相似文献

[1]
The ANEMONE: Theoretical Foundations for UX Evaluation of Action and Intention Recognition in Human-Robot Interaction.

Sensors (Basel). 2020-7-31

[2]
User Experience in Social Robots.

Sensors (Basel). 2021-7-26

[3]
Forming We-intentions under breakdown situations in human-robot interactions.

Comput Methods Programs Biomed. 2023-12

[4]
A Mixed-Perception Approach for Safe Human-Robot Collaboration in Industrial Automation.

Sensors (Basel). 2020-11-7

[5]
Are robots present? From motor simulation to "being there".

Cyberpsychol Behav. 2008-12

[6]
UX Framework Including Imbalanced UX Dataset Reduction Method for Analyzing Interaction Trends of Agent Systems.

Sensors (Basel). 2023-2-2

[7]
The role of haptic feedback for the integration of intentions in shared task execution.

IEEE Trans Haptics. 2013

[8]
Development of a new set of Heuristics for the evaluation of Human-Robot Interaction in industrial settings: Heuristics Robots Experience (HEUROBOX).

Front Robot AI. 2023-8-31

[9]
Variable Admittance Control Based on Human-Robot Collaboration Observer Using Frequency Analysis for Sensitive and Safe Interaction.

Sensors (Basel). 2021-3-8

[10]
Using a Social Robot to Evaluate Facial Expressions in the Wild.

Sensors (Basel). 2020-11-24

引用本文的文献

[1]
Development of a new set of Heuristics for the evaluation of Human-Robot Interaction in industrial settings: Heuristics Robots Experience (HEUROBOX).

Front Robot AI. 2023-8-31

[2]
User Experience Design for Social Robots: A Case Study in Integrating Embodiment.

Sensors (Basel). 2023-6-1

[3]
Towards a Safe Human-Robot Collaboration Using Information on Human Worker Activity.

Sensors (Basel). 2023-1-22

[4]
Expecting, understanding, relating, and interacting-older, middle-aged and younger adults' perspectives on breakdown situations in human-robot dialogues.

Front Robot AI. 2022-10-14

[5]
User Experience in Social Robots.

Sensors (Basel). 2021-7-26

[6]
The Aesthetics of Encounter: A Relational-Performative Design Approach to Human-Robot Interaction.

Front Robot AI. 2021-3-16

本文引用的文献

[1]
A Radical Reassessment of the Body in Social Cognition.

Front Psychol. 2020-6-5

[2]
Probabilistic Human Intent Recognition for Shared Autonomy in Assistive Robotics.

ACM Trans Hum Robot Interact. 2019-12

[3]
Why and How to Approach User Experience in Safety-Critical Domains: The Example of Health Care.

Hum Factors. 2021-8

[4]
Interacting With Robots to Investigate the Bases of Social Interaction.

IEEE Trans Neural Syst Rehabil Eng. 2017-10-16

[5]
The body of knowledge: On the role of the living body in grounding embodied cognition.

Biosystems. 2016-10

[6]
Investigating the ability to read others' intentions using humanoid robots.

Front Psychol. 2015-9-9

[7]
Developing human factors/ergonomics as a design discipline.

Appl Ergon. 2013-6-13

[8]
The anthropomorphic brain: the mirror neuron system responds to human and robotic actions.

Neuroimage. 2007-5-1

[9]
Socially intelligent robots: dimensions of human-robot interaction.

Philos Trans R Soc Lond B Biol Sci. 2007-4-29

[10]
Understanding and sharing intentions: the origins of cultural cognition.

Behav Brain Sci. 2005-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索