Suppr超能文献

对响应力的踝蛋白周转进行体内定量分析。

In vivo quantitative analysis of Talin turnover in response to force.

作者信息

Hákonardóttir Guðlaug Katrín, López-Ceballos Pablo, Herrera-Reyes Alejandra Donají, Das Raibatak, Coombs Daniel, Tanentzapf Guy

机构信息

Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.

Department of Mathematics and Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada.

出版信息

Mol Biol Cell. 2015 Nov 5;26(22):4149-62. doi: 10.1091/mbc.E15-05-0304. Epub 2015 Oct 7.

Abstract

Cell adhesion to the extracellular matrix (ECM) allows cells to form and maintain three-dimensional tissue architecture. Cell-ECM adhesions are stabilized upon exposure to mechanical force. In this study, we used quantitative imaging and mathematical modeling to gain mechanistic insight into how integrin-based adhesions respond to increased and decreased mechanical forces. A critical means of regulating integrin-based adhesion is provided by modulating the turnover of integrin and its adhesion complex (integrin adhesion complex [IAC]). The turnover of the IAC component Talin, a known mechanosensor, was analyzed using fluorescence recovery after photobleaching. Experiments were carried out in live, intact flies in genetic backgrounds that increased or decreased the force applied on sites of adhesion. This analysis showed that when force is elevated, the rate of assembly of new adhesions increases such that cell-ECM adhesion is stabilized. Moreover, under conditions of decreased force, the overall rate of turnover, but not the proportion of adhesion complex components undergoing turnover, increases. Using point mutations, we identify the key functional domains of Talin that mediate its response to force. Finally, by fitting a mathematical model to the data, we uncover the mechanisms that mediate the stabilization of ECM-based adhesion during development.

摘要

细胞与细胞外基质(ECM)的黏附使细胞能够形成并维持三维组织结构。细胞与ECM的黏附在受到机械力作用时会得到稳定。在本研究中,我们运用定量成像和数学建模,以深入了解基于整合素的黏附如何对机械力的增加和减少做出反应。调节基于整合素的黏附的一个关键方式是通过调节整合素及其黏附复合体(整合素黏附复合体[IAC])的周转来实现的。使用光漂白后荧光恢复技术分析了IAC组分踝蛋白(一种已知的机械传感器)的周转情况。实验在具有增加或减少黏附部位所受机械力的遗传背景的活体完整果蝇中进行。该分析表明,当机械力升高时,新黏附的组装速率增加,从而使细胞与ECM的黏附得以稳定。此外,在机械力降低的条件下,周转的总体速率增加,但经历周转的黏附复合体组分的比例并未增加。通过点突变,我们确定了踝蛋白介导其对机械力反应的关键功能结构域。最后,通过将数学模型与数据拟合,我们揭示了在发育过程中介导基于ECM的黏附稳定的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2994/4710244/39f6cb7df33a/4149fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验