Suppr超能文献

骨骼与骨骼肌:机械转导中的关键参与者及潜在的重叠机制

Bone and skeletal muscle: Key players in mechanotransduction and potential overlapping mechanisms.

作者信息

Goodman Craig A, Hornberger Troy A, Robling Alexander G

机构信息

Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne, Australia; Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.

Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

Bone. 2015 Nov;80:24-36. doi: 10.1016/j.bone.2015.04.014.

Abstract

The development and maintenance of skeletal muscle and bone mass is critical for movement, health and issues associated with the quality of life. Skeletal muscle and bone mass are regulated by a variety of factors that include changes in mechanical loading. Moreover, bone mass is, in large part, regulated by muscle-derived mechanical forces and thus by changes in muscle mass/strength. A thorough understanding of the cellular mechanism(s) responsible for mechanotransduction in bone and skeletal muscle is essential for the development of effective exercise and pharmaceutical strategies aimed at increasing, and/or preventing the loss of, mass in these tissues. Thus, in this review we will attempt to summarize the current evidence for the major molecular mechanisms involved in mechanotransduction in skeletal muscle and bone. By examining the differences and similarities in mechanotransduction between these two tissues, it is hoped that this review will stimulate new insights and ideas for future research and promote collaboration between bone and muscle biologists.(1).

摘要

骨骼肌和骨量的发育与维持对于运动、健康以及与生活质量相关的问题至关重要。骨骼肌和骨量受多种因素调节,其中包括机械负荷的变化。此外,骨量在很大程度上受肌肉衍生的机械力调节,进而受肌肉质量/力量变化的调节。深入了解负责骨和骨骼肌机械转导的细胞机制,对于制定旨在增加和/或预防这些组织质量损失的有效运动和药物策略至关重要。因此,在本综述中,我们将试图总结目前关于骨骼肌和骨机械转导主要分子机制的证据。通过研究这两种组织在机械转导方面的异同,希望本综述能激发未来研究的新见解和新想法,并促进骨生物学家和肌肉生物学家之间的合作。(1)

相似文献

3
Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle.
Int J Biochem Cell Biol. 2011 Sep;43(9):1267-76. doi: 10.1016/j.biocel.2011.05.007. Epub 2011 May 19.
5
Muscle forces or gravity: what predominates mechanical loading on bone?
Med Sci Sports Exerc. 2009 Nov;41(11):2050-5. doi: 10.1249/MSS.0b013e3181a8c717.
6
From mechanical stimulus to bone formation: A review.
Med Eng Phys. 2015 Aug;37(8):719-28. doi: 10.1016/j.medengphy.2015.05.015.
7
Role of mTORC1 in mechanically induced increases in translation and skeletal muscle mass.
J Appl Physiol (1985). 2019 Aug 1;127(2):581-590. doi: 10.1152/japplphysiol.01011.2018. Epub 2019 Jan 24.
9
Yes-Associated Protein is up-regulated by mechanical overload and is sufficient to induce skeletal muscle hypertrophy.
FEBS Lett. 2015 Jun 4;589(13):1491-7. doi: 10.1016/j.febslet.2015.04.047. Epub 2015 May 8.
10
Molecular brakes regulating mTORC1 activation in skeletal muscle following synergist ablation.
Am J Physiol Endocrinol Metab. 2014 Aug 15;307(4):E365-73. doi: 10.1152/ajpendo.00674.2013. Epub 2014 Jun 24.

引用本文的文献

2
Multiscale Analysis Reveals Altered Characteristics in Femur and Mandible of Mice on a High Phosphate Diet.
Calcif Tissue Int. 2025 Aug 27;116(1):114. doi: 10.1007/s00223-025-01425-2.
6
Exercise for Postmenopausal Bone Health - Can We Raise the Bar?
Curr Osteoporos Rep. 2025 Apr 10;23(1):20. doi: 10.1007/s11914-025-00912-7.
8
Biochemical Mechanisms and Rehabilitation Strategies in Osteoporosis-Related Pain: A Systematic Review.
Clin Pract. 2024 Dec 19;14(6):2737-2758. doi: 10.3390/clinpract14060216.

本文引用的文献

1
Vascular TRP channels: performing under pressure and going with the flow.
Physiology (Bethesda). 2014 Sep;29(5):343-60. doi: 10.1152/physiol.00009.2014.
2
Constitutive activation of CaMKKα signaling is sufficient but not necessary for mTORC1 activation and growth in mouse skeletal muscle.
Am J Physiol Endocrinol Metab. 2014 Oct 15;307(8):E686-94. doi: 10.1152/ajpendo.00322.2014. Epub 2014 Aug 26.
5
Mechanical activation of mammalian target of rapamycin pathway is required for cartilage development.
FASEB J. 2014 Oct;28(10):4470-81. doi: 10.1096/fj.14-252783. Epub 2014 Jul 2.
6
Activation of ERK by sodium tungstate induces protein synthesis and prevents protein degradation in rat L6 myotubes.
FEBS Lett. 2014 Jun 27;588(14):2246-54. doi: 10.1016/j.febslet.2014.05.004. Epub 2014 May 17.
7
Mechanical load increases in bone formation via a sclerostin-independent pathway.
J Bone Miner Res. 2014 Nov;29(11):2456-67. doi: 10.1002/jbmr.2278.
8
From the cytoplasm into the cilium: bon voyage.
Organogenesis. 2014 Jan 1;10(1):138-57. doi: 10.4161/org.29055. Epub 2014 May 2.
9
Physiological effects of microgravity on bone cells.
Calcif Tissue Int. 2014 Jun;94(6):569-79. doi: 10.1007/s00223-014-9851-x. Epub 2014 Apr 1.
10
Functional selectivity of GPCR signaling in animals.
Curr Opin Cell Biol. 2014 Apr;27:102-8. doi: 10.1016/j.ceb.2013.11.010. Epub 2013 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验