Deng Hong-Wen, Qiu Chuan, Li Yisu, Gong Yun, Lin Weiqiang, Afolabi Boluwatife, Thumbigere-Math Vivek, Su Kuan-Jui, Deng Jeffrey, Gnanesh Shashank Sajjan Mungasavalli, Luo Zhe, Tian Qing, Chen Yiping, Shen Hui
Tulane University.
Tulane.
Res Sq. 2025 Jun 12:rs.3.rs-6701121. doi: 10.21203/rs.3.rs-6701121/v1.
Bone and skeletal muscle are essential components of the musculoskeletal system, enabling movement, load-bearing, and systemic regulation. These tissues communicate through dynamic bone-muscle crosstalk mediated by cytokines, growth factors, and extracellular matrix (ECM) proteins. The spatial organization of these mediators is critical to maintaining tissue integrity, and disruptions contribute to diseases such as osteoporosis, sarcopenia, and metabolic syndrome. Despite the importance of spatial context, studies using spatial transcriptomics (ST) to investigate bone-muscle interactions remain limited. Here, we applied 10X Genomics Visium ST profiling and advanced computational tools to characterize cell-cell communication networks and ligand-receptor (L-R) interactions in mouse femur and adjacent skeletal muscle. We identified eight major cell types: erythroid cells, endothelial cells, skeletal muscle cells, osteoblasts, myeloid cells, monocytes/macrophages, mesenchymal stem cells, and adipocytes, each exhibiting distinct spatial gene expression profiles. Signaling pathway analysis revealed 13 key pathways mediating intra- and inter-tissue communication, including COLLAGEN, THBS, VEGF, FN1, and TENASCIN. Notable L-R pairs involved in bone, muscle, and bone-muscle crosstalk include Col1a2-Sdc4 (osteoblast-ECM interactions), Tnxb-Sdc4 (muscle-to-endothelial signaling), Vegfa-Vegfr1 and Vegfa-Vegfr2 (muscle-to-endothelial/myeloid signaling), and Comp-Sdc4 (monocyte/macrophage-to-osteoblast signaling). This study presents the first spatially resolved map of cell-cell communication across bone and skeletal muscle, providing novel insights into their molecular crosstalk. These findings offer a critical foundation for future therapeutic strategies targeting musculoskeletal disorders.
骨骼和骨骼肌是肌肉骨骼系统的重要组成部分,实现运动、承重和全身调节功能。这些组织通过由细胞因子、生长因子和细胞外基质(ECM)蛋白介导的动态骨-肌相互作用进行交流。这些介质的空间组织对于维持组织完整性至关重要,而其破坏会导致诸如骨质疏松症、肌肉减少症和代谢综合征等疾病。尽管空间背景很重要,但使用空间转录组学(ST)来研究骨-肌相互作用的研究仍然有限。在这里,我们应用10X Genomics Visium ST分析和先进的计算工具来表征小鼠股骨和相邻骨骼肌中的细胞-细胞通讯网络以及配体-受体(L-R)相互作用。我们鉴定出八种主要细胞类型:红细胞、内皮细胞、骨骼肌细胞、成骨细胞、髓细胞、单核细胞/巨噬细胞、间充质干细胞和脂肪细胞,每种细胞类型都表现出独特的空间基因表达谱。信号通路分析揭示了13条介导组织内和组织间通讯的关键通路,包括胶原蛋白、血小板反应蛋白、血管内皮生长因子、纤连蛋白和腱生蛋白。参与骨、肌肉和骨-肌相互作用的显著L-R对包括Col1a2-Sdc4(成骨细胞-ECM相互作用)、Tnxb-Sdc4(肌肉到内皮信号传导)、Vegfa-Vegfr1和Vegfa-Vegfr2(肌肉到内皮/髓细胞信号传导)以及Comp-Sdc4(单核细胞/巨噬细胞到成骨细胞信号传导)。本研究展示了首张跨越骨骼和骨骼肌的细胞-细胞通讯空间解析图谱,为它们的分子相互作用提供了新的见解。这些发现为未来针对肌肉骨骼疾病的治疗策略提供了关键基础。