Reverón Inés, de las Rivas Blanca, Matesanz Ruth, Muñoz Rosario, López de Felipe Félix
Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN-CSIC), Madrid, Spain.
Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain.
Microb Cell Fact. 2015 Oct 9;14:160. doi: 10.1186/s12934-015-0345-y.
Gallic acid (GA) is a model hydroxybenzoic acid that occurs esterified in the lignocellulosic biomass of higher plants. GA displays relevant biological activities including anticancer properties. Owing to its antimicrobial and cellulase-inhibiting activities, GA also imposes constraints to the fermentability of lignocellulosic hydrolysates. In depth-knowledge of the mechanisms used by tolerant microorganisms to adapt to hydroxybenzoic acids would be a step forward to improve the bioavailability of GA or select/engineer production hosts with improved metabolic traits for the bioconversion of pretreated lignocellulosic biomass.
Whole genome transcriptional profiling using DNA microarrays was used to characterize the molecular response of Lactobacillus plantarum WCFS1 to GA. Expression levels of 14 and 40 genes were differentially regulated at 1.5 and 15 mM GA, respectively. The transcriptomic analysis identified a marked induction of genes with confirmed or related roles to gastrointestinal survival, the repression of genes coding for certain ABC-type transporters and modulation of genes involved in the control of intracellular ammonia levels, among other responses. Most notably, a core set of genes dedicated to produce GA from polyphenols (tanB Lp ), decarboxylate GA to pyrogallol (lpdB, lpdC and lpdD) and transport functions (lp_2943) was highly overexpressed at both GA concentrations. Correspondingly, resting cells of strain WCFS1 induced by GA, but not their non-induced controls, produced pyrogallol. Gene expression and organization of genes involved in GA metabolism suggested a chemiosmotic mechanism of energy generation. Resting cells of L. plantarum induced by GA generated a membrane potential and a pH gradient across the membrane immediately upon addition of GA. Altogether, transcriptome profiling correlated with physiological observations indicating that a proton motive force could be generated during GA metabolism as a result of electrogenic GA uptake coupled with proton consumption by the intracellular gallate decarboxylase.
The combination of transcriptome and physiological analyses revealed versatile molecular mechanisms involved in the adaptation of L. plantarum to GA. These data provide a platform to improve the survival of Lactobacillus in the gut. Our data may also guide the selection/engineering of microorganisms that better tolerate phenolic inhibitors present in pretreated lignocellulosic feedstocks.
没食子酸(GA)是一种典型的羟基苯甲酸,它以酯化形式存在于高等植物的木质纤维素生物质中。GA具有多种相关生物活性,包括抗癌特性。由于其抗菌和抑制纤维素酶的活性,GA也会对木质纤维素水解产物的发酵性能产生限制。深入了解耐受微生物适应羟基苯甲酸的机制,将有助于提高GA的生物可利用性,或筛选/改造具有改善代谢特性的生产宿主,用于预处理木质纤维素生物质的生物转化。
利用DNA微阵列进行全基因组转录谱分析,以表征植物乳杆菌WCFS1对GA的分子应答。在1.5 mM和15 mM GA处理下,分别有14个和40个基因的表达水平受到差异调节。转录组分析发现,与胃肠道存活相关的基因明显上调;编码某些ABC型转运蛋白的基因受到抑制;参与细胞内氨水平调控的基因发生了变化,等等。最值得注意的是,一组负责从多酚生成GA(tanB Lp)、将GA脱羧生成焦性没食子酸(lpdB、lpdC和lpdD)以及转运功能(lp_2943)的核心基因,在两种GA浓度下均高度过表达。相应地,GA诱导的WCFS1菌株静息细胞产生了焦性没食子酸,而未诱导的对照细胞则未产生。GA代谢相关基因的表达和组织情况表明存在一种化学渗透能量产生机制。GA诱导植物乳杆菌静息细胞在添加GA后立即产生跨膜电位和pH梯度。总之,转录组分析与生理观察结果相关,表明在GA代谢过程中,由于GA的电中性摄取与细胞内没食子酸盐脱羧酶消耗质子相偶联,可能产生质子动力势。
转录组和生理分析相结合,揭示了植物乳杆菌适应GA的多种分子机制。这些数据为提高乳酸菌在肠道中的存活率提供了一个平台。我们的数据还可能指导筛选/改造能更好耐受预处理木质纤维素原料中酚类抑制剂的微生物。