Pulido-Mateos Elena C, Lessard-Lord Jacob, Desjardins Yves, Roy Denis
Institut sur la Nutrition et les Aliments Fonctionnels de l'Université Laval, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Quebec G1 V 0A6, QC, Canada.
Laboratoire de Génomique Microbienne, Département des Sciences des Aliments, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Quebec G1 V 0A6, QC, Canada.
J Agric Food Chem. 2024 Oct 2;72(39):21677-21689. doi: 10.1021/acs.jafc.4c07890. Epub 2024 Sep 20.
Flavan-3-ols intake is associated with numerous health benefits, but these are influenced by their conversion into smaller phenolic metabolites by the gut microbiota. Thus, the identification of bacteria that metabolize flavan-3-ols could lead to targeted interventions to enhance their benefits. To this end, we screened 47 strains for their ability to metabolize (+)-catechin, a flavan-3-ol. Then, we assessed these strains for their capacity to convert various flavan-3-ol structures. Out of the 47 isolates, 12 released 3-(3',4'-dihydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)-propan-2-ol (a form of diphenylpropan-2-ol) from (+)-catechin. All strains metabolized (+)-catechin, (-)-epicatechin, (-)-epigallocatechin, but only a subset transformed (-)-gallocatechin. Among these simple flavan-3-ol structures, (-)-epicatechin was metabolized the most. A hierarchical cluster analysis identified two groups of flavan-3-ol-metabolizing strains categorized as having "high" and "low" production of diphenylpropan-2-ols. Notably, the strains that produced higher levels of diphenylpropan-2-ol from (+)-gallocatechin and (+)-catechin also performed better with a camu-camu extract, which was studied as a complex source of flavan-3-ols and predominantly contained these two flavan-3-ols. These results demonstrate the interstrain variability in metabolism, which may be useful for developing tailored formulations to enhance the production of flavan-3-ols bioactive metabolites.
摄入黄烷-3-醇对健康有诸多益处,但这些益处会受到肠道微生物群将其转化为较小酚类代谢产物的影响。因此,鉴定代谢黄烷-3-醇的细菌有助于采取针对性干预措施来增强其益处。为此,我们筛选了47株细菌代谢黄烷-3-醇(+)-儿茶素的能力。然后,我们评估了这些菌株转化各种黄烷-3-醇结构的能力。在47株分离菌中,有12株从(+)-儿茶素中释放出3-(3',4'-二羟基苯基)-1-(2,4,6-三羟基苯基)-丙-2-醇(二苯基丙-2-醇的一种形式)。所有菌株都能代谢(+)-儿茶素、(-)-表儿茶素、(-)-表没食子儿茶素,但只有一部分能转化(-)-没食子儿茶素。在这些简单的黄烷-3-醇结构中,(-)-表儿茶素的代谢程度最高。层次聚类分析确定了两组代谢黄烷-3-醇的菌株,分为二苯基丙-2-醇“高”产量组和“低”产量组。值得注意的是,从(+)-没食子儿茶素和(+)-儿茶素中产生较高水平二苯基丙-2-醇的菌株,对作为黄烷-醇复杂来源且主要含有这两种黄烷-3-醇的卡姆果提取物的代谢效果也更好。这些结果表明了菌株间代谢的变异性,这可能有助于开发定制配方以提高黄烷-3-醇生物活性代谢产物的产量。