Mahr Regina, Gätgens Cornelia, Gätgens Jochem, Polen Tino, Kalinowski Jörn, Frunzke Julia
IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany.
Metab Eng. 2015 Nov;32:184-194. doi: 10.1016/j.ymben.2015.09.017. Epub 2015 Oct 8.
Adaptive laboratory evolution has proven a valuable strategy for metabolic engineering. Here, we established an experimental evolution approach for improving microbial metabolite production by imposing an artificial selective pressure on the fluorescent output of a biosensor using fluorescence-activated cell sorting. Cells showing the highest fluorescent output were iteratively isolated and (re-)cultivated. The L-valine producer Corynebacterium glutamicum ΔaceE was equipped with an L-valine-responsive sensor based on the transcriptional regulator Lrp of C. glutamicum. Evolved strains featured a significantly higher growth rate, increased L-valine titers (~25%) and a 3-4-fold reduction of by-product formation. Genome sequencing resulted in the identification of a loss-of-function mutation (UreD-E188*) in the gene ureD (urease accessory protein), which was shown to increase L-valine production by up to 100%. Furthermore, decreased L-alanine formation was attributed to a mutation in the global regulator GlxR. These results emphasize biosensor-driven evolution as a straightforward approach to improve growth and productivity of microbial production strains.
适应性实验室进化已被证明是代谢工程中的一种有价值的策略。在此,我们建立了一种实验进化方法,通过使用荧光激活细胞分选对生物传感器的荧光输出施加人工选择压力来提高微生物代谢物产量。对显示最高荧光输出的细胞进行迭代分离和(再)培养。L-缬氨酸产生菌谷氨酸棒杆菌ΔaceE配备了基于谷氨酸棒杆菌转录调节因子Lrp的L-缬氨酸响应传感器。进化菌株具有显著更高的生长速率、增加的L-缬氨酸滴度(约25%)以及副产物形成减少3至4倍。基因组测序鉴定出ureD基因(脲酶辅助蛋白)中的一个功能丧失突变(UreD-E188*),该突变被证明可使L-缬氨酸产量提高多达100%。此外,L-丙氨酸形成的减少归因于全局调节因子GlxR中的一个突变。这些结果强调了生物传感器驱动的进化是提高微生物生产菌株生长和生产力的一种直接方法。