Suppr超能文献

通过适应性实验室进化加速了谷氨酸棒杆菌的戊二酸生产。

Adaptive laboratory evolution accelerated glutarate production by Corynebacterium glutamicum.

机构信息

Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.

Technology Platform Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany.

出版信息

Microb Cell Fact. 2021 May 10;20(1):97. doi: 10.1186/s12934-021-01586-3.

Abstract

BACKGROUND

The demand for biobased polymers is increasing steadily worldwide. Microbial hosts for production of their monomeric precursors such as glutarate are developed. To meet the market demand, production hosts have to be improved constantly with respect to product titers and yields, but also shortening bioprocess duration is important.

RESULTS

In this study, adaptive laboratory evolution was used to improve a C. glutamicum strain engineered for production of the C-dicarboxylic acid glutarate by flux enforcement. Deletion of the L-glutamic acid dehydrogenase gene gdh coupled growth to glutarate production since two transaminases in the glutarate pathway are crucial for nitrogen assimilation. The hypothesis that strains selected for faster glutarate-coupled growth by adaptive laboratory evolution show improved glutarate production was tested. A serial dilution growth experiment allowed isolating faster growing mutants with growth rates increasing from 0.10 h by the parental strain to 0.17 h by the fastest mutant. Indeed, the fastest growing mutant produced glutarate with a twofold higher volumetric productivity of 0.18 g L h than the parental strain. Genome sequencing of the evolved strain revealed candidate mutations for improved production. Reverse genetic engineering revealed that an amino acid exchange in the large subunit of L-glutamic acid-2-oxoglutarate aminotransferase was causal for accelerated glutarate production and its beneficial effect was dependent on flux enforcement due to deletion of gdh. Performance of the evolved mutant was stable at the 2 L bioreactor-scale operated in batch and fed-batch mode in a mineral salts medium and reached a titer of 22.7 g L, a yield of 0.23 g g and a volumetric productivity of 0.35 g L h. Reactive extraction of glutarate directly from the fermentation broth was optimized leading to yields of 58% and 99% in the reactive extraction and reactive re-extraction step, respectively. The fermentation medium was adapted according to the downstream processing results.

CONCLUSION

Flux enforcement to couple growth to operation of a product biosynthesis pathway provides a basis to select strains growing and producing faster by adaptive laboratory evolution. After identifying candidate mutations by genome sequencing causal mutations can be identified by reverse genetics. As exemplified here for glutarate production by C. glutamicum, this approach allowed deducing rational metabolic engineering strategies.

摘要

背景

全球对生物基聚合物的需求稳步增长。正在开发用于生产其单体前体(如戊二酸)的微生物宿主。为了满足市场需求,必须不断改进生产宿主,提高产品的浓度和产率,缩短生物工艺的持续时间也很重要。

结果

在这项研究中,通过适应性实验室进化来改进用于生产 C-二羧酸戊二酸的谷氨酸棒杆菌工程菌株,通过通量强化来实现。缺失 L-谷氨酸脱氢酶基因 gdh 使谷氨酸的生产与生长偶联,因为戊二酸途径中的两种转氨酶对氮同化至关重要。通过适应性实验室进化选择生长更快的戊二酸偶联生长的菌株可以提高戊二酸生产的假设得到了检验。连续稀释生长实验允许分离出生长速度更快的突变体,其比亲本菌株的生长速度从 0.10 h 增加到 0.17 h。事实上,生长最快的突变体产生戊二酸的比体积生产率提高了两倍,达到 0.18 g L h。对进化菌株的基因组测序揭示了提高产量的候选突变。反向遗传工程表明,L-谷氨酸-2-酮戊二酸转氨酶大亚基中的一个氨基酸交换是加速戊二酸生产的原因,其有益效果依赖于 gdh 的缺失导致的通量强化。在矿物盐培养基中分批和补料分批操作的 2 L 生物反应器规模上,进化突变体的性能稳定,达到 22.7 g L 的浓度、0.23 g gg 的产率和 0.35 g L h 的比体积生产率。直接从发酵液中进行戊二酸的反应萃取得到了优化,在反应萃取和反应再萃取步骤中分别达到 58%和 99%的产率。根据下游处理结果对发酵培养基进行了调整。

结论

将生长与产物生物合成途径的操作偶联的通量强化为通过适应性实验室进化选择生长和生产更快的菌株提供了基础。通过基因组测序确定候选突变后,可通过反向遗传学确定因果突变。正如这里通过谷氨酸棒杆菌生产戊二酸所举例说明的那样,这种方法允许推导出合理的代谢工程策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3468/8112011/d8e4c6fe719a/12934_2021_1586_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验