文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

由银纳米粒子诱导的细胞死亡的机制与银离子不同。

The mechanism of cell death induced by silver nanoparticles is distinct from silver cations.

机构信息

Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157, USA.

Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA.

出版信息

Part Fibre Toxicol. 2021 Oct 14;18(1):37. doi: 10.1186/s12989-021-00430-1.


DOI:10.1186/s12989-021-00430-1
PMID:34649580
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8515661/
Abstract

BACKGROUND: Precisely how silver nanoparticles (AgNPs) kill mammalian cells still is not fully understood. It is not clear if AgNP-induced damage differs from silver cation (Ag), nor is it known how AgNP damage is transmitted from cell membranes, including endosomes, to other organelles. Cells can differ in relative sensitivity to AgNPs or Ag, which adds another layer of complexity to identifying specific mechanisms of action. Therefore, we determined if there were specific effects of AgNPs that differed from Ag in cells with high or low sensitivity to either toxicant. METHODS: Cells were exposed to intact AgNPs, Ag, or defined mixtures of AgNPs with Ag, and viability was assessed. The level of dissolved Ag in AgNP suspensions was determined using inductively coupled plasma mass spectrometry. Changes in reactive oxygen species following AgNP or Ag exposure were quantified, and treatment with catalase, an enzyme that catalyzes the decomposition of HO to water and oxygen, was used to determine selectively the contribution of HO to AgNP and Ag induced cell death. Lipid peroxides, formation of 4-hydroxynonenol protein adducts, protein thiol oxidation, protein aggregation, and activation of the integrated stress response after AgNP or Ag exposure were quantified. Lastly, cell membrane integrity and indications of apoptosis or necrosis in AgNP and Ag treated cells were examined by flow cytometry. RESULTS: We identified AgNPs with negligible Ag contamination. We found that SUM159 cells, which are a triple-negative breast cancer cell line, were more sensitive to AgNP exposure less sensitive to Ag compared to iMECs, an immortalized, breast epithelial cell line. This indicates that high sensitivity to AgNPs was not predictive of similar sensitivity to Ag. Exposure to AgNPs increased protein thiol oxidation, misfolded proteins, and activation of the integrated stress response in AgNP sensitive SUM159 cells but not in iMEC cells. In contrast, Ag cause similar damage in Ag sensitive iMEC cells but not in SUM159 cells. Both Ag and AgNP exposure increased HO levels; however, treatment with catalase rescued cells from Ag cytotoxicity but not from AgNPs. Instead, our data support a mechanism by which damage from AgNP exposure propagates through cells by generation of lipid peroxides, subsequent lipid peroxide mediated oxidation of proteins, and via generation of 4-hydroxynonenal (4-HNE) protein adducts. CONCLUSIONS: There are distinct differences in the responses of cells to AgNPs and Ag. Specifically, AgNPs drive cell death through lipid peroxidation leading to proteotoxicity and necrotic cell death, whereas Ag increases HO, which drives oxidative stress and apoptotic cell death. This work identifies a previously unknown mechanism by which AgNPs kill mammalian cells that is not dependent upon the contribution of Ag released in extracellular media. Understanding precisely which factors drive the toxicity of AgNPs is essential for biomedical applications such as cancer therapy, and of importance to identifying consequences of unintended exposures.

摘要

背景: 纳米银颗粒(AgNPs)究竟如何杀死哺乳动物细胞尚不完全清楚。目前还不清楚 AgNP 诱导的损伤是否与银离子(Ag)不同,也不知道 AgNP 损伤如何从细胞膜(包括内体)传递到其他细胞器。细胞对 AgNPs 或 Ag 的相对敏感性可能不同,这为确定特定的作用机制增加了另一层复杂性。因此,我们确定了在对两种毒物敏感性不同的细胞中,AgNPs 是否存在与 Ag 不同的特定作用。

方法: 将细胞暴露于完整的 AgNPs、Ag 或 AgNPs 与 Ag 的定义混合物中,并评估其活力。使用电感耦合等离子体质谱法(ICP-MS)测定 AgNP 悬浮液中溶解的 Ag 水平。AgNP 或 Ag 暴露后,定量测定活性氧(ROS)的变化,并使用过氧化氢酶(一种催化 HO 分解为水和氧的酶)处理,以选择性地确定 HO 对 AgNP 和 Ag 诱导的细胞死亡的贡献。AgNP 或 Ag 暴露后,还定量测定了脂质过氧化物、4-羟基壬烯蛋白加合物的形成、蛋白质巯基氧化、蛋白质聚集以及整合应激反应的激活。最后,通过流式细胞术检测 AgNP 和 Ag 处理细胞的细胞膜完整性以及细胞凋亡或坏死的迹象。

结果: 我们确定了 AgNPs 几乎没有 Ag 污染。我们发现,与永生化的乳腺上皮细胞系 iMEC 相比,三阴性乳腺癌细胞系 SUM159 对 AgNP 暴露更敏感,对 Ag 的敏感性更低。这表明对 AgNPs 的高敏感性并不预示着对 Ag 的类似敏感性。AgNP 暴露增加了 SUM159 细胞中蛋白质巯基氧化、错误折叠的蛋白质和整合应激反应的激活,但在 iMEC 细胞中则没有。相比之下,Ag 在 Ag 敏感的 iMEC 细胞中引起类似的损伤,但在 SUM159 细胞中则没有。Ag 和 AgNP 暴露均增加了 HO 水平;然而,用过氧化氢酶处理可挽救 Ag 细胞毒性,但不能挽救 AgNP。相反,我们的数据支持这样一种机制,即 AgNP 暴露通过生成脂质过氧化物、随后脂质过氧化物介导的蛋白质氧化以及通过生成 4-羟基壬烯醛(4-HNE)蛋白加合物,在细胞内传播损伤。

结论: 细胞对 AgNPs 和 Ag 的反应存在明显差异。具体而言,AgNP 通过脂质过氧化导致细胞毒性和坏死性细胞死亡,而 Ag 则通过生成 HO 驱动氧化应激和凋亡性细胞死亡。这项工作确定了一种以前未知的 AgNPs 杀死哺乳动物细胞的机制,该机制不依赖于细胞外介质中释放的 Ag。了解究竟是什么因素导致 AgNPs 的毒性对于癌症治疗等生物医学应用至关重要,对于识别意外暴露的后果也很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/ba77fe4e4ad9/12989_2021_430_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/7f38862e5d32/12989_2021_430_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/53fc144eee45/12989_2021_430_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/6d2787926523/12989_2021_430_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/727fbea55f42/12989_2021_430_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/64acf4629218/12989_2021_430_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/263576c05a7e/12989_2021_430_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/cf5b61b31ff5/12989_2021_430_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/4157a26ae9f0/12989_2021_430_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/ba77fe4e4ad9/12989_2021_430_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/7f38862e5d32/12989_2021_430_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/53fc144eee45/12989_2021_430_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/6d2787926523/12989_2021_430_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/727fbea55f42/12989_2021_430_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/64acf4629218/12989_2021_430_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/263576c05a7e/12989_2021_430_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/cf5b61b31ff5/12989_2021_430_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/4157a26ae9f0/12989_2021_430_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a1/8515661/ba77fe4e4ad9/12989_2021_430_Fig9_HTML.jpg

相似文献

[1]
The mechanism of cell death induced by silver nanoparticles is distinct from silver cations.

Part Fibre Toxicol. 2021-10-14

[2]
Both released silver ions and particulate Ag contribute to the toxicity of AgNPs to earthworm Eisenia fetida.

Nanotoxicology. 2014-11-11

[3]
Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells.

Toxicol In Vitro. 2009-9

[4]
Combined effects of exposure to engineered silver nanoparticles and the water-soluble fraction of crude oil in the marine copepod Calanus finmarchicus.

Aquat Toxicol. 2020-7-24

[5]
Effects of Silver Nanoparticles on Physiological and Proteomic Responses of Tobacco () Seedlings Are Coating-Dependent.

Int J Mol Sci. 2022-12-14

[6]
Silver nanoparticles compromise neurodevelopment in PC12 cells: critical contributions of silver ion, particle size, coating, and composition.

Environ Health Perspect. 2010-9-14

[7]
Visible-light reduced silver nanoparticles' toxicity in Allium cepa test system.

Environ Pollut. 2019-11-19

[8]
Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles.

Environ Sci Pollut Res Int. 2015-12

[9]
Nanosilver-coated socks and their toxicity to zebrafish (Danio rerio) embryos.

Chemosphere. 2014-10-7

[10]
Antioxidant Enzyme Activity and Lipid Peroxidation in Aporrectodea caliginosa Earthworms Exposed to Silver Nanoparticles and Silver Nitrate in Spiked Soil.

Environ Toxicol Chem. 2020-5-7

引用本文的文献

[1]
Potentiometric Detection of Calcium Ions Using an Organic Electrochemical Transistor.

ACS Omega. 2025-7-18

[2]
Sustainable production and antibacterial efficacy of silver nanoparticles on cellulose nanofibers from mushroom waste.

RSC Adv. 2025-6-11

[3]
Investigation of Cell Damage Induced by Silver Nanoparticles in a Model Cell System.

Pharmaceutics. 2025-3-21

[4]
Ultrasound-assisted green synthesis of silver nanoparticles using Ruta graveolens L. Extract and antitumor evaluation.

Ultrason Sonochem. 2025-6

[5]
Ecotoxicity of fungal-synthesized silver nanoparticles: mechanisms, impacts, and sustainable mitigation strategies.

3 Biotech. 2025-4

[6]
DIA/SWATH-Mass Spectrometry Revealing Melanoma Cell Proteome Transformations with Silver Nanoparticles: An Innovative Comparative Study.

Int J Mol Sci. 2025-2-26

[7]
In Vitro Study on Nematicidal Effect of Silver Nanoparticles Against .

Molecules. 2025-3-1

[8]
The blood-brain barriers: novel nanocarriers for central nervous system diseases.

J Nanobiotechnology. 2025-2-26

[9]
Highly Stable Antitumor Silver-Lipid Nanoparticles Optimized for Targeted Therapy.

Int J Nanomedicine. 2025-2-1

[10]
Phytosynthesis of Silver Nanoparticles Using (Lam.) A.H. Gentry (Bignoniaceae) Leaf Extract: Characterization and Their Biological Activities.

Pharmaceutics. 2024-9-25

本文引用的文献

[1]
Low Doses of Silver Nanoparticles Selectively Induce Lipid Peroxidation and Proteotoxic Stress in Mesenchymal Subtypes of Triple-Negative Breast Cancer.

Cancers (Basel). 2021-8-22

[2]
Integrated Redox Proteomic Analysis Highlights New Mechanisms of Sensitivity to Silver Nanoparticles.

Mol Cell Proteomics. 2021

[3]
Comparative Analysis of Commercial Colloidal Silver Products.

Int J Nanomedicine. 2020

[4]
Interference: A Much-Neglected Aspect in High-Throughput Screening of Nanoparticles.

Int J Toxicol. 2020

[5]
Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm silver nanoparticle aerosols in healthy adult rats after a single 1½-hour inhalation exposure.

Part Fibre Toxicol. 2020-6-5

[6]
Products of Lipid Peroxidation as a Factor in the Toxic Effect of Silver Nanoparticles.

Materials (Basel). 2020-5-28

[7]
Antioxidant Enzyme Activity and Lipid Peroxidation in Aporrectodea caliginosa Earthworms Exposed to Silver Nanoparticles and Silver Nitrate in Spiked Soil.

Environ Toxicol Chem. 2020-5-7

[8]
Mode of silver clearance following 28-day inhalation exposure to silver nanoparticles determined from lung burden assessment including post-exposure observation periods.

Arch Toxicol. 2020-3

[9]
Silver nanoparticles selectively treat triple-negative breast cancer cells without affecting non-malignant breast epithelial cells in vitro and in vivo.

FASEB Bioadv. 2019-9-30

[10]
Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment.

J Hazard Mater. 2020-5-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索