Suppr超能文献

使用高通量靶向外显子组测序技术筛查肥厚型心肌病中的拷贝数变异。

Use of high-throughput targeted exome-sequencing to screen for copy number variation in hypertrophic cardiomyopathy.

作者信息

Lopes L R, Murphy C, Syrris P, Dalageorgou C, McKenna W J, Elliott P M, Plagnol V

机构信息

Inherited Cardiovascular Disease Unit, Institute of Cardiovascular Science, UCL, London, UK; Cardiovascular Centre, University of Lisbon, Lisbon, Portugal.

UCL Genetics Institute, UCL, London, UK.

出版信息

Eur J Med Genet. 2015 Nov;58(11):611-6. doi: 10.1016/j.ejmg.2015.10.001. Epub 2015 Oct 9.

Abstract

INTRODUCTION

The role of copy-number variants (CNV) as a cause of hypertrophic cardiomyopathy (HCM) is poorly studied. The aim of this study was to use high-throughput sequence (HTS) data combined with a read-depth strategy, to screen for CNV in cardiomyopathy-associated genes in a large consecutive cohort of HCM patients.

METHODS

Five-hundred-and-five unrelated HCM patients were genotyped using a HTS approach for 41 cardiovascular genes. We used a previously validated read-depth strategy (ExomeDepth) to call CNVs from the short-read sequence data. Detected CNVs in 19 cardiomyopathy-associated genes were then validated by comparative genomic hybridization array.

RESULTS

Twelve CNVs were identified. Four CNVs in 4 patients (0.8% of the cohort) were validated: one large deletion in MYBPC3, one large deletion in PDLIM3, one duplication of the entire TNNT2 gene and one large duplication in LMNA.

CONCLUSIONS

Our data suggest that the proportion of HCM cases with pathogenic CNVs is small (<1%). For the small subset of patients with clearly interpretable CNVs, our findings have direct clinical implications. Short read sequence data can be used for CNV calling, but the high false positive rate requires a validation step. The two-step strategy described here is effective at identifying novel genetic causes of HCM and similar techniques should be applied whenever possible.

摘要

引言

作为肥厚型心肌病(HCM)病因的拷贝数变异(CNV)的作用研究较少。本研究的目的是使用高通量测序(HTS)数据结合读深策略,在一大组连续的HCM患者中筛选心肌病相关基因中的CNV。

方法

采用HTS方法对505例无亲缘关系的HCM患者的41个心血管基因进行基因分型。我们使用先前验证的读深策略(ExomeDepth)从短读序列数据中检测CNV。然后通过比较基因组杂交阵列验证在19个心肌病相关基因中检测到的CNV。

结果

共鉴定出12个CNV。4例患者(占队列的0.8%)中的4个CNV得到验证:MYBPC3基因的一个大片段缺失、PDLIM3基因的一个大片段缺失、TNNT2基因的整个重复以及LMNA基因的一个大片段重复。

结论

我们的数据表明,致病性CNV导致的HCM病例比例较小(<1%)。对于一小部分具有可明确解释的CNV的患者,我们的发现具有直接的临床意义。短读序列数据可用于CNV检测,但高假阳性率需要进行验证步骤。这里描述的两步策略在识别HCM的新遗传病因方面是有效的,应尽可能应用类似技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验