Suppr超能文献

高脂饮食减弱大鼠胃迷走神经传入纤维中5-羟色胺3介导反应的葡萄糖依赖性促进作用。

High fat diet attenuates glucose-dependent facilitation of 5-HT3 -mediated responses in rat gastric vagal afferents.

作者信息

Troy Amanda E, Simmonds Sarah S, Stocker Sean D, Browning Kirsteen N

机构信息

Department of Neural and Behavioural Sciences, Penn State University College of Medicine, Hershey, PA, 17033, USA.

Department of Cellular and Integrative Physiology, Penn State University College of Medicine, Hershey, PA, 17033, USA.

出版信息

J Physiol. 2016 Jan 1;594(1):99-114. doi: 10.1113/JP271558. Epub 2015 Nov 15.

Abstract

Glucose regulates the density and function of 5-HT3 receptors on gastric vagal afferent neurones. Diet-induced obesity compromises the excitability and responsiveness of vagal afferents. In this study, we assessed whether exposure to a high fat diet (HFD) compromises the glucose-dependent modulation of 5-HT responses in gastric vagal afferents prior to the development of obesity. We show that HFD does not alter the response of gastric vagal afferent nerves and neurones to 5-HT but attenuates the ability of glucose to amplify 5-HT3-induced responses. These results suggest that glucose-dependent vagal afferent signalling is compromised by relatively short periods of exposure to HFD well in advance of the development of obesity or glycaemic dysregulation. Glucose regulates the density and function of 5-HT3 receptors on gastric vagal afferent neurones. Since diet-induced obesity attenuates the responsiveness of gastric vagal afferents to several neurohormones, the aim of the present study was to determine whether high fat diet (HFD) compromises the glucose-dependent modulation of 5-HT responses in gastric vagal afferents prior to the development of obesity. Rats were fed control or HFD (14% or 60% kilocalories from fat, respectively) for up to 8 weeks. Neurophysiological recordings assessed the ability of 5-HT to increase anterior gastric vagal afferent nerve (VAN) activity in vivo before and after acute hyperglycaemia, while electrophysiological recordings from gastric-projecting nodose neurones assessed the ability of glucose to modulate the 5-HT response in vitro. Immunocytochemical studies determined alterations in the neuronal distribution of 5-HT3 receptors. 5-HT and cholecystokinin (CCK) induced dose-dependent increases in VAN activity in all rats; HFD attenuated the response to CCK, but not 5-HT. The 5-HT-induced response was amplified by acute hyperglycaemia in control, but not HFD, rats. Similarly, although 5-HT induced an inward current in both control and HFD gastric nodose neurones in vitro, the 5-HT response and receptor distribution was amplified by acute hyperglycaemia only in control rats. These data suggest that, while HFD does not affect the response of gastric-projecting vagal afferents to 5-HT, it attenuates the ability of glucose to amplify 5-HT effects. This suggests that glucose-dependent vagal afferent signalling is compromised by short periods of exposure to HFD well in advance of obesity or glycaemic dysregulation.

摘要

葡萄糖调节胃迷走传入神经元上5-羟色胺3(5-HT3)受体的密度和功能。饮食诱导的肥胖会损害迷走传入神经的兴奋性和反应性。在本研究中,我们评估了在肥胖发生之前,暴露于高脂肪饮食(HFD)是否会损害胃迷走传入神经中5-HT反应的葡萄糖依赖性调节。我们发现,HFD不会改变胃迷走传入神经和神经元对5-HT的反应,但会减弱葡萄糖放大5-HT3诱导反应的能力。这些结果表明,在肥胖或血糖失调发生之前,相对较短时间暴露于HFD就会损害葡萄糖依赖性迷走传入信号。葡萄糖调节胃迷走传入神经元上5-HT3受体的密度和功能。由于饮食诱导的肥胖会减弱胃迷走传入神经对几种神经激素的反应性,本研究的目的是确定在肥胖发生之前,高脂肪饮食(HFD)是否会损害胃迷走传入神经中5-HT反应的葡萄糖依赖性调节。将大鼠分别喂食对照饮食或HFD(分别含14%或60%千卡热量的脂肪)长达8周。神经生理学记录评估了急性高血糖前后5-HT在体内增加胃前迷走传入神经(VAN)活动的能力,而来自胃投射结节神经元的电生理记录评估了葡萄糖在体外调节5-HT反应的能力。免疫细胞化学研究确定了5-HT3受体神经元分布的变化。5-HT和胆囊收缩素(CCK)在所有大鼠中均诱导VAN活动呈剂量依赖性增加;HFD减弱了对CCK的反应,但未减弱对5-HT的反应。在对照大鼠中,急性高血糖会放大5-HT诱导的反应,但在HFD大鼠中则不会。同样,虽然5-HT在体外诱导对照和HFD胃结节神经元产生内向电流,但仅在对照大鼠中,急性高血糖会放大5-HT反应和受体分布。这些数据表明,虽然HFD不会影响胃投射迷走传入神经对5-HT的反应,但会减弱葡萄糖放大5-HT效应的能力。这表明在肥胖或血糖失调之前,短时间暴露于HFD就会损害葡萄糖依赖性迷走传入信号。

相似文献

1
2
Exposure to a high fat diet during the perinatal period alters vagal motoneurone excitability, even in the absence of obesity.
J Physiol. 2015 Jan 1;593(1):285-303. doi: 10.1113/jphysiol.2014.282806. Epub 2014 Dec 2.
3
Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons.
Neurogastroenterol Motil. 2012 Oct;24(10):e476-88. doi: 10.1111/j.1365-2982.2012.01987.x. Epub 2012 Jul 30.
4
Activation of cholecystokinin (CCK 1) and serotonin (5-HT 3) receptors increases the discharge of pancreatic vagal afferents.
Eur J Pharmacol. 2008 Dec 28;601(1-3):198-206. doi: 10.1016/j.ejphar.2008.11.007. Epub 2008 Nov 9.
5
Sensory signal transduction in the vagal primary afferent neurons.
Curr Med Chem. 2007;14(24):2554-63. doi: 10.2174/092986707782023334.
6
High fat diet induced changes in gastric vagal afferent response to adiponectin.
Physiol Behav. 2015 Dec 1;152(Pt B):354-62. doi: 10.1016/j.physbeh.2015.06.016. Epub 2015 Jun 12.
7
Serotonin and cholecystokinin synergistically stimulate rat vagal primary afferent neurones.
J Physiol. 2004 Sep 1;559(Pt 2):651-62. doi: 10.1113/jphysiol.2004.064816. Epub 2004 Jul 2.
8
Apelin modulates murine gastric vagal afferent mechanosensitivity.
Physiol Behav. 2018 Oct 1;194:466-473. doi: 10.1016/j.physbeh.2018.06.039. Epub 2018 Jun 28.
9
5-HT activates vagal afferent cell bodies in vivo: role of 5-HT2 and 5-HT3 receptors.
Neuroscience. 2006 Nov 17;143(1):273-87. doi: 10.1016/j.neuroscience.2006.07.032. Epub 2006 Oct 9.
10
The role of central 5-HT3 receptors in vagal reflex inputs to neurones in the nucleus tractus solitarius of anaesthetized rats.
J Physiol. 2005 Aug 1;566(Pt 3):939-53. doi: 10.1113/jphysiol.2005.085845. Epub 2005 May 19.

引用本文的文献

1
Microfluidic compartmentalization of rat vagal afferent neurons to model gut-brain axis.
Bioelectron Med. 2024 Feb 21;10(1):3. doi: 10.1186/s42234-023-00140-3.
3
Cultured Vagal Afferent Neurons as Sensors for Intestinal Effector Molecules.
Biosensors (Basel). 2023 May 31;13(6):601. doi: 10.3390/bios13060601.
4
5-HT Receptors on Mitochondria Influence Mitochondrial Function.
Int J Mol Sci. 2023 May 5;24(9):8301. doi: 10.3390/ijms24098301.
5
Brainstem astrocytes control homeostatic regulation of caloric intake.
J Physiol. 2023 Feb;601(4):801-829. doi: 10.1113/JP283566. Epub 2023 Jan 25.
6
Oxytocin and cardiometabolic interoception: Knowing oneself affects ingestive and social behaviors.
Appetite. 2022 Aug 1;175:106054. doi: 10.1016/j.appet.2022.106054. Epub 2022 Apr 18.
7
Tapping into 5-HT Receptors to Modify Metabolic and Immune Responses.
Int J Mol Sci. 2021 Nov 2;22(21):11910. doi: 10.3390/ijms222111910.
8
Brain-gut communication: vagovagal reflexes interconnect the two "brains".
Am J Physiol Gastrointest Liver Physiol. 2021 Nov 1;321(5):G576-G587. doi: 10.1152/ajpgi.00214.2021. Epub 2021 Oct 13.
9
Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism.
Cell Metab. 2021 Jul 6;33(7):1466-1482.e7. doi: 10.1016/j.cmet.2021.05.002. Epub 2021 May 26.
10
Both high fat and high carbohydrate diets impair vagus nerve signaling of satiety.
Sci Rep. 2021 May 17;11(1):10394. doi: 10.1038/s41598-021-89465-0.

本文引用的文献

2
Putative roles of neuropeptides in vagal afferent signaling.
Physiol Behav. 2014 Sep;136:155-69. doi: 10.1016/j.physbeh.2014.03.011. Epub 2014 Mar 18.
3
Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones.
J Physiol. 2013 May 1;591(9):2357-72. doi: 10.1113/jphysiol.2012.249268. Epub 2013 Mar 4.
4
Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons.
Neurogastroenterol Motil. 2012 Oct;24(10):e476-88. doi: 10.1111/j.1365-2982.2012.01987.x. Epub 2012 Jul 30.
5
Pancreatic insulin and exocrine secretion are under the modulatory control of distinct subpopulations of vagal motoneurones in the rat.
J Physiol. 2012 Aug 1;590(15):3611-22. doi: 10.1113/jphysiol.2012.234955. Epub 2012 Jun 18.
6
Insulin resistance in the nervous system.
Trends Endocrinol Metab. 2012 Mar;23(3):133-41. doi: 10.1016/j.tem.2011.12.004. Epub 2012 Jan 13.
7
Diet-induced adaptation of vagal afferent function.
J Physiol. 2012 Jan 1;590(1):209-21. doi: 10.1113/jphysiol.2011.222158. Epub 2011 Nov 7.
8
Postprandial and basal glucose in type 2 diabetes: assessment and respective impacts.
Diabetes Technol Ther. 2011 Jun;13 Suppl 1:S25-32. doi: 10.1089/dia.2010.0239.
9
Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse.
J Physiol. 2011 Jun 1;589(Pt 11):2857-70. doi: 10.1113/jphysiol.2010.204594. Epub 2011 Mar 21.
10
Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin.
Physiol Behav. 2011 Nov 30;105(1):100-5. doi: 10.1016/j.physbeh.2011.02.040. Epub 2011 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验