Megchelenbrink Wout, Rossell Sergio, Huynen Martijn A, Notebaart Richard A, Marchiori Elena
Institute for Computing and Information Sciences (ICIS), Radboud University, Nijmegen, the Netherlands; Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre, Nijmegen, the Netherlands; Centre for Systems Biology and Bioenergetics (CSBB), Radboud University Medical Centre, Nijmegen, the Netherlands.
Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre, Nijmegen, the Netherlands; Centre for Systems Biology and Bioenergetics (CSBB), Radboud University Medical Centre, Nijmegen, the Netherlands; Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands.
PLoS One. 2015 Oct 12;10(10):e0139665. doi: 10.1371/journal.pone.0139665. eCollection 2015.
Genome-scale metabolic networks can be modeled in a constraint-based fashion. Reaction stoichiometry combined with flux capacity constraints determine the space of allowable reaction rates. This space is often large and a central challenge in metabolic modeling is finding the biologically most relevant flux distributions. A widely used method is flux balance analysis (FBA), which optimizes a biologically relevant objective such as growth or ATP production. Although FBA has proven to be highly useful for predicting growth and byproduct secretion, it cannot predict the intracellular fluxes under all environmental conditions. Therefore, alternative strategies have been developed to select flux distributions that are in agreement with experimental "omics" data, or by incorporating experimental flux measurements. The latter, unfortunately can only be applied to a limited set of reactions and is currently not feasible at the genome-scale. On the other hand, it has been observed that micro-organisms favor a suboptimal growth rate, possibly in exchange for a more "flexible" metabolic network. Instead of dedicating the internal network state to an optimal growth rate in one condition, a suboptimal growth rate is used, that allows for an easier switch to other nutrient sources. A small decrease in growth rate is exchanged for a relatively large gain in metabolic capability to adapt to changing environmental conditions.
Here, we propose Maximum Metabolic Flexibility (MMF) a computational method that utilizes this observation to find the most probable intracellular flux distributions. By mapping measured flux data from central metabolism to the genome-scale models of Escherichia coli and Saccharomyces cerevisiae we show that i) indeed, most of the measured fluxes agree with a high adaptability of the network, ii) this result can be used to further reduce the space of feasible solutions iii) this reduced space improves the quantitative predictions made by FBA and contains a significantly larger fraction of the measured fluxes compared to the flux space that was reduced by a uniform sampling approach and iv) MMF can be used to select reactions in the network that contribute most to the steady-state flux space. Constraining the selected reactions improves the quantitative predictions of FBA considerably more than adding an equal amount of flux constraints, selected using a more naïve approach. Our method can be applied to any cell type without requiring prior information.
MMF is freely available as a MATLAB plugin at: http://cs.ru.nl/~wmegchel/mmf.
基因组规模的代谢网络可以通过基于约束的方式进行建模。反应化学计量学与通量容量约束相结合,决定了允许的反应速率空间。这个空间通常很大,代谢建模中的一个核心挑战是找到生物学上最相关的通量分布。一种广泛使用的方法是通量平衡分析(FBA),它优化一个生物学上相关的目标,如生长或ATP产生。尽管FBA已被证明在预测生长和副产物分泌方面非常有用,但它不能预测所有环境条件下的细胞内通量。因此,已经开发了替代策略来选择与实验“组学”数据一致的通量分布,或者通过纳入实验通量测量数据。不幸的是,后者只能应用于有限的一组反应,目前在基因组规模上不可行。另一方面,已经观察到微生物倾向于次优生长速率,这可能是为了换取更“灵活”的代谢网络。不是将内部网络状态专用于一种条件下的最优生长速率,而是使用次优生长速率,这允许更容易地切换到其他营养源。生长速率的小幅下降换取了代谢能力相对较大的提升,以适应不断变化的环境条件。
在这里,我们提出了最大代谢灵活性(MMF),这是一种计算方法,利用这一观察结果来找到最可能的细胞内通量分布。通过将来自中心代谢的测量通量数据映射到大肠杆菌和酿酒酵母的基因组规模模型,我们表明:i)确实,大多数测量通量与网络的高适应性一致;ii)这一结果可用于进一步缩小可行解的空间;iii)与通过均匀采样方法缩小的通量空间相比,这个缩小的空间改善了FBA做出的定量预测,并且包含了显著更多比例的测量通量;iv)MMF可用于选择网络中对稳态通量空间贡献最大的反应。约束所选反应比使用更简单的方法添加等量的通量约束能更显著地改善FBA的定量预测。我们的方法可以应用于任何细胞类型,无需先验信息。
MMF作为MATLAB插件可在以下网址免费获取:http://cs.ru.nl/~wmegchel/mmf 。