Massucci Francesco Alessandro, Font-Clos Francesc, De Martino Andrea, Castillo Isaac Pérez
Department d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona 43007, Spain.
Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, Bellaterra (Barcelona) E-08193, Spain.
Metabolites. 2013 Sep 20;3(3):838-52. doi: 10.3390/metabo3030838.
Quite generally, constraint-based metabolic flux analysis describes the space of viable flux configurations for a metabolic network as a high-dimensional polytope defined by the linear constraints that enforce the balancing of production and consumption fluxes for each chemical species in the system. In some cases, the complexity of the solution space can be reduced by performing an additional optimization, while in other cases, knowing the range of variability of fluxes over the polytope provides a sufficient characterization of the allowed configurations. There are cases, however, in which the thorough information encoded in the individual distributions of viable fluxes over the polytope is required. Obtaining such distributions is known to be a highly challenging computational task when the dimensionality of the polytope is sufficiently large, and the problem of developing cost-effective ad hoc algorithms has recently seen a major surge of interest. Here, we propose a method that allows us to perform the required computation heuristically in a time scaling linearly with the number of reactions in the network, overcoming some limitations of similar techniques employed in recent years. As a case study, we apply it to the analysis of the human red blood cell metabolic network, whose solution space can be sampled by different exact techniques, like Hit-and-Run Monte Carlo (scaling roughly like the third power of the system size). Remarkably accurate estimates for the true distributions of viable reaction fluxes are obtained, suggesting that, although further improvements are desirable, our method enhances our ability to analyze the space of allowed configurations for large biochemical reaction networks.
一般来说,基于约束的代谢通量分析将代谢网络可行通量配置的空间描述为一个高维多面体,该多面体由线性约束定义,这些约束强制系统中每种化学物质的生产通量和消耗通量保持平衡。在某些情况下,可以通过执行额外的优化来降低解空间的复杂性,而在其他情况下,了解多面体上通量的变异性范围就足以表征允许的配置。然而,在某些情况下,需要多面体上可行通量的个体分布中编码的详尽信息。当多面体的维度足够大时,获取此类分布是一项极具挑战性的计算任务,并且开发具有成本效益的特殊算法的问题最近引起了极大的关注。在这里,我们提出了一种方法,该方法使我们能够以与网络中反应数量成线性比例的时间进行启发式所需的计算,克服了近年来使用的类似技术的一些局限性。作为一个案例研究,我们将其应用于人类红细胞代谢网络的分析,其解空间可以通过不同的精确技术进行采样,如撞跑蒙特卡罗方法(大致与系统大小的三次方成比例)。我们获得了可行反应通量真实分布的非常准确的估计,这表明尽管还需要进一步改进,但我们的方法增强了我们分析大型生化反应网络允许配置空间的能力。