Suppr超能文献

胶体方钠石ZIF晶体的合成后各向异性湿化学蚀刻

Post-Synthetic Anisotropic Wet-Chemical Etching of Colloidal Sodalite ZIF Crystals.

作者信息

Avci Civan, Ariñez-Soriano Javier, Carné-Sánchez Arnau, Guillerm Vincent, Carbonell Carlos, Imaz Inhar, Maspoch Daniel

机构信息

ICN2-Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain).

Institució Catalana de Recerca i Estudis Avançats (ICREA), 08100 Barcelona (Spain).

出版信息

Angew Chem Int Ed Engl. 2015 Nov 23;54(48):14417-21. doi: 10.1002/anie.201507588. Epub 2015 Oct 12.

Abstract

Controlling the shape of metal-organic framework (MOF) crystals is important for understanding their crystallization and useful for myriad applications. However, despite the many advances in shaping of inorganic nanoparticles, post-synthetic shape control of MOFs and, in general, molecular crystals remains embryonic. Herein, we report using a simple wet-chemistry process at room temperature to control the anisotropic etching of colloidal ZIF-8 and ZIF-67 crystals. Our work enables uniform reshaping of these porous materials into unprecedented morphologies, including cubic and tetrahedral crystals, and even hollow boxes, by an acid-base reaction and subsequent sequestration of leached metal ions. Etching tests on these ZIFs reveal that etching occurs preferentially in the crystallographic directions richer in metal-ligand bonds; that, along these directions, the etching rate tends to be faster on the crystal surfaces of higher dimensionality; and that the etching can be modulated by adjusting the pH of the etchant solution.

摘要

控制金属有机框架(MOF)晶体的形状对于理解其结晶过程很重要,并且在众多应用中也很有用。然而,尽管在无机纳米颗粒的成型方面取得了许多进展,但MOF以及一般分子晶体的合成后形状控制仍处于起步阶段。在此,我们报告了使用一种简单的室温湿化学过程来控制胶体ZIF-8和ZIF-67晶体的各向异性蚀刻。我们的工作通过酸碱反应以及随后对浸出金属离子的螯合,能够将这些多孔材料均匀地重塑为前所未有的形态,包括立方晶体和四面体晶体,甚至空心盒。对这些ZIFs的蚀刻测试表明,蚀刻优先发生在金属-配体键更丰富的晶体学方向;沿着这些方向,蚀刻速率在更高维度的晶体表面往往更快;并且可以通过调节蚀刻剂溶液的pH值来调节蚀刻。

相似文献

1
Post-Synthetic Anisotropic Wet-Chemical Etching of Colloidal Sodalite ZIF Crystals.
Angew Chem Int Ed Engl. 2015 Nov 23;54(48):14417-21. doi: 10.1002/anie.201507588. Epub 2015 Oct 12.
2
Pore-Specific Anisotropic Etching of Zeolitic Imidazolate Frameworks by Carboxylic Acid Vapors.
J Am Chem Soc. 2024 Aug 21;146(33):23138-23145. doi: 10.1021/jacs.4c05044. Epub 2024 Jul 17.
3
Colloidal metal-organic framework particles: the pioneering case of ZIF-8.
Chem Soc Rev. 2019 Nov 25;48(23):5534-5546. doi: 10.1039/c9cs00472f.
4
Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk-Shell Metal@Zn/Co ZIF Nanostructures.
Chemistry. 2016 Mar 1;22(10):3304-3311. doi: 10.1002/chem.201503619. Epub 2016 Jan 28.
5
Unlocking Advanced Architectures of Single-Crystal Metal-Organic Frameworks.
Angew Chem Int Ed Engl. 2025 Apr 1;64(14):e202423939. doi: 10.1002/anie.202423939. Epub 2025 Feb 5.
7
Investigation of Controlled Growth of Metal-Organic Frameworks on Anisotropic Virus Particles.
ACS Appl Mater Interfaces. 2018 May 30;10(21):18161-18169. doi: 10.1021/acsami.8b01369. Epub 2018 Apr 1.
9
Atypical Hybrid Metal-Organic Frameworks (MOFs): A Combinative Process for MOF-on-MOF Growth, Etching, and Structure Transformation.
Angew Chem Int Ed Engl. 2020 Jan 13;59(3):1327-1333. doi: 10.1002/anie.201912986. Epub 2019 Dec 4.
10

引用本文的文献

3
Designing transition metal-based porous architectures for supercapacitor electrodes: a review.
RSC Adv. 2024 Apr 9;14(16):11482-11512. doi: 10.1039/d4ra01320d. eCollection 2024 Apr 3.
5
Interfacial Bonding between a Crystalline Metal-Organic Framework and an Inorganic Glass.
J Am Chem Soc. 2023 Oct 25;145(42):22913-22924. doi: 10.1021/jacs.3c04248. Epub 2023 Oct 11.
6
Facet-controlled assembly for organizing metal-organic framework particles into extended structures.
iScience. 2023 Sep 9;26(10):107867. doi: 10.1016/j.isci.2023.107867. eCollection 2023 Oct 20.
7
Hierarchical ZIF-8 Materials via Acid Gas-Induced Defect Sites: Synthesis, Characterization, and Functional Properties.
ACS Appl Mater Interfaces. 2023 Aug 30;15(34):40623-40632. doi: 10.1021/acsami.3c08344. Epub 2023 Aug 18.
8
Leaching in Specific Facets of ZIF-67 and ZIF-L Zeolitic Imidazolate Frameworks During the CO Cycloaddition with Epichlorohydrin.
Chem Mater. 2023 Jan 3;35(2):692-699. doi: 10.1021/acs.chemmater.2c03374. eCollection 2023 Jan 24.
9
Mechanisms for self-templating design of micro/nanostructures toward efficient energy storage.
Exploration (Beijing). 2022 May 31;2(5):20210237. doi: 10.1002/EXP.20210237. eCollection 2022 Oct.
10
Three-Dimensional Electrochemical Sensors for Food Safety Applications.
Biosensors (Basel). 2023 May 8;13(5):529. doi: 10.3390/bios13050529.

本文引用的文献

1
Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties.
Angew Chem Int Ed Engl. 2015 Apr 27;54(18):5331-5. doi: 10.1002/anie.201500267. Epub 2015 Feb 20.
3
Recent advances in porous polyoxometalate-based metal-organic framework materials.
Chem Soc Rev. 2014 Jul 7;43(13):4615-32. doi: 10.1039/c3cs60404g. Epub 2014 Mar 27.
4
A facile synthesis of UiO-66, UiO-67 and their derivatives.
Chem Commun (Camb). 2013 Oct 21;49(82):9449-51. doi: 10.1039/c3cc46105j.
5
Sequential binding of large molecules to hairy MOFs.
Chem Commun (Camb). 2013 Jul 28;49(59):6641-3. doi: 10.1039/c3cc42711k.
6
Tailored design of multiple nanoarchitectures in metal-cyanide hybrid coordination polymers.
J Am Chem Soc. 2013 Jan 9;135(1):384-91. doi: 10.1021/ja3096703. Epub 2012 Dec 27.
7
Growth mechanism of microporous zincophosphate sodalite revealed by in situ atomic force microscopy.
J Am Chem Soc. 2012 Aug 8;134(31):13066-73. doi: 10.1021/ja303814p. Epub 2012 Jul 25.
8
Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching.
Angew Chem Int Ed Engl. 2012 Jan 23;51(4):984-8. doi: 10.1002/anie.201105190. Epub 2011 Dec 16.
9
Metal-organic frameworks in biomedicine.
Chem Rev. 2012 Feb 8;112(2):1232-68. doi: 10.1021/cr200256v. Epub 2011 Dec 14.
10
Carving at the nanoscale: sequential galvanic exchange and Kirkendall growth at room temperature.
Science. 2011 Dec 9;334(6061):1377-80. doi: 10.1126/science.1212822.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验