Ganesan Arvind, Leisen Johannes, Thyagarajan Raghuram, Sholl David S, Nair Sankar
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
ACS Appl Mater Interfaces. 2023 Aug 30;15(34):40623-40632. doi: 10.1021/acsami.3c08344. Epub 2023 Aug 18.
Microporous metal-organic frameworks (MOFs) have been widely studied for molecular separation and catalysis. The uniform micropores of MOFs (<2 nm) can introduce diffusion limitations and render the interiors of the crystal inaccessible to target molecules. The introduction of hierarchical porosity (interconnected micro and mesopores) can enhance intra-crystalline diffusion while maintaining the separation/catalytic selectivity. Conventional hierarchical MOF synthesis involves complex strategies such as elongated linkers, soft templating, and sacrificial templates. Here, we demonstrate a more general approach using our controlled acid gas-enabled degradation and reconstruction (Solvent-Assisted Crystal Redemption) strategy. Selective linker labilization of ZIF-8 is shown to generate a hierarchical pore structure with mesoporous cages (∼50 nm) while maintaining microporosity. Detailed structural and spectroscopic characterization of the controlled degradation, linker insertion, and subsequent linker thermolysis is presented to show the clustering of acid gas-induced defects and the generation of mesopores. These findings indicate the generality of controlled degradation and reconstruction as a means for linker insertion in a wider variety of MOFs and creating hierarchical porosity. Enhanced molecular diffusion and catalytic activity in the hierarchical ZIF-8 are demonstrated by the adsorption kinetics of 1-butanol and a Knoevenagel condensation reaction.
微孔金属有机框架材料(MOFs)已被广泛研究用于分子分离和催化。MOFs的均匀微孔(<2纳米)会引入扩散限制,使晶体内部的目标分子难以进入。引入分级孔隙率(相互连接的微孔和介孔)可以增强晶体内扩散,同时保持分离/催化选择性。传统的分级MOF合成涉及复杂的策略,如使用长链连接体、软模板和牺牲模板。在此,我们展示了一种更通用的方法,即使用我们的可控酸性气体降解和重建(溶剂辅助晶体赎回)策略。结果表明,对ZIF-8进行选择性连接体不稳定化处理可生成具有介孔笼(约50纳米)的分级孔结构,同时保持微孔率。本文详细介绍了可控降解、连接体插入以及随后连接体热解的结构和光谱表征,以展示酸性气体诱导缺陷的聚集和介孔的生成。这些发现表明,可控降解和重建作为一种在更广泛的MOFs中插入连接体并创造分级孔隙率的方法具有通用性。通过1-丁醇的吸附动力学和Knoevenagel缩合反应证明了分级ZIF-8中分子扩散和催化活性的增强。