Suppr超能文献

实验性进化与细菌抗性:(共同)进化成本与权衡作为噬菌体疗法研究中的机遇

Experimental evolution and bacterial resistance: (co)evolutionary costs and trade-offs as opportunities in phage therapy research.

作者信息

Scanlan Pauline D, Buckling Angus, Hall Alex R

机构信息

Teagasc Food Research Center; Moorepark , Fermoy, Co Cork, Ireland.

Biosciences; ESI; University of Exeter; Penryn Campus , Cornwall, UK.

出版信息

Bacteriophage. 2015 May 21;5(2):e1050153. doi: 10.1080/21597081.2015.1050153. eCollection 2015 Apr-Jun.

Abstract

Antagonistic coevolution between bacteria and phages (reciprocal selection for resistance and infectivity) has been demonstrated in a wide range of natural ecosystems, as well as experimental populations of microbes, yet exploiting knowledge of coevolution for the prophylactic and therapeutic use of phages is under-explored. In this addendum to our recent paper we discuss how real-time coevolution studies using experimental populations of bacteria and phages can provide novel insight into the changes in bacterial phenotypes that result from resistance evolution against coevolving phages, and how this may ultimately improve our understanding of phage therapy and ability to design effective treatments.

摘要

细菌与噬菌体之间的拮抗协同进化(对耐药性和感染性的相互选择)已在广泛的自然生态系统以及微生物实验群体中得到证实,然而,利用协同进化知识将噬菌体用于预防和治疗方面的探索还不够充分。在我们近期论文的这篇附录中,我们讨论了利用细菌和噬菌体实验群体进行的实时协同进化研究如何能够为因对抗协同进化噬菌体产生耐药性进化而导致的细菌表型变化提供新的见解,以及这最终如何可能增进我们对噬菌体疗法的理解和设计有效治疗方法的能力。

相似文献

1
Experimental evolution and bacterial resistance: (co)evolutionary costs and trade-offs as opportunities in phage therapy research.
Bacteriophage. 2015 May 21;5(2):e1050153. doi: 10.1080/21597081.2015.1050153. eCollection 2015 Apr-Jun.
2
The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage.
Evolution. 2008 Jan;62(1):1-11. doi: 10.1111/j.1558-5646.2007.00260.x. Epub 2007 Nov 12.
3
Arms race and fluctuating selection dynamics in Pseudomonas aeruginosa bacteria coevolving with phage OMKO1.
J Evol Biol. 2022 Nov;35(11):1475-1487. doi: 10.1111/jeb.14095. Epub 2022 Sep 27.
4
Greater Phage Genotypic Diversity Constrains Arms-Race Coevolution.
Front Cell Infect Microbiol. 2022 Mar 4;12:834406. doi: 10.3389/fcimb.2022.834406. eCollection 2022.
5
Overcoming the growth-infectivity trade-off in a bacteriophage slows bacterial resistance evolution.
Evol Appl. 2021 Jun 19;14(8):2055-2063. doi: 10.1111/eva.13260. eCollection 2021 Aug.
6
Plasmid carriage can limit bacteria-phage coevolution.
Biol Lett. 2015 Aug;11(8). doi: 10.1098/rsbl.2015.0361.
7
Antagonistic coevolution with parasites increases the cost of host deleterious mutations.
Proc Biol Sci. 2006 Jan 7;273(1582):45-9. doi: 10.1098/rspb.2005.3279.
8
Coevolutionary dynamics shape the structure of bacteria-phage infection networks.
Evolution. 2019 May;73(5):1001-1011. doi: 10.1111/evo.13731. Epub 2019 Apr 17.
10
Antagonistic coevolution between a bacterium and a bacteriophage.
Proc Biol Sci. 2002 May 7;269(1494):931-6. doi: 10.1098/rspb.2001.1945.

引用本文的文献

1
Targeted enhancement of bacteriophage activity against antibiotic-resistant biofilms through an evolutionary assay.
Front Microbiol. 2024 Jul 8;15:1372325. doi: 10.3389/fmicb.2024.1372325. eCollection 2024.
2
Phage-driven coevolution reveals trade-off between antibiotic and phage resistance in .
ISME Commun. 2024 Mar 22;4(1):ycae039. doi: 10.1093/ismeco/ycae039. eCollection 2024 Jan.
3
Bacteriophage-Host Interactions and the Therapeutic Potential of Bacteriophages.
Viruses. 2024 Mar 20;16(3):478. doi: 10.3390/v16030478.
5
Phage-resistant mutations impact bacteria susceptibility to future phage infections and antibiotic response.
Ecol Evol. 2023 Jan 6;13(1):e9712. doi: 10.1002/ece3.9712. eCollection 2023 Jan.
7
A Phage Foundry Framework to Systematically Develop Viral Countermeasures to Combat Antibiotic-Resistant Bacterial Pathogens.
iScience. 2022 Mar 19;25(4):104121. doi: 10.1016/j.isci.2022.104121. eCollection 2022 Apr 15.
8
Bacteriophages in the Control of sp. in Aquaculture Systems: An Integrative View.
Antibiotics (Basel). 2022 Jan 27;11(2):163. doi: 10.3390/antibiotics11020163.
10
Application of Bacteriophages on Shiga Toxin-Producing (STEC) Biofilm.
Antibiotics (Basel). 2021 Nov 20;10(11):1423. doi: 10.3390/antibiotics10111423.

本文引用的文献

2
Parasite host range and the evolution of host resistance.
J Evol Biol. 2015 May;28(5):1119-30. doi: 10.1111/jeb.12639. Epub 2015 Apr 23.
3
Bacterial Adaptation during Chronic Respiratory Infections.
Pathogens. 2015 Mar 2;4(1):66-89. doi: 10.3390/pathogens4010066.
5
Phage therapies for plants and people.
Curr Biol. 2014 Jun 16;24(12):R541-4. doi: 10.1016/j.cub.2014.05.064.
6
Contrasted coevolutionary dynamics between a bacterial pathogen and its bacteriophages.
Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11109-14. doi: 10.1073/pnas.1406763111. Epub 2014 Jul 14.
7
Phage therapy gets revitalized.
Nature. 2014 Jun 5;510(7503):15-6. doi: 10.1038/510015a.
9
Antagonistic coevolution of marine planktonic viruses and their hosts.
Ann Rev Mar Sci. 2014;6:393-414. doi: 10.1146/annurev-marine-010213-135108. Epub 2013 Aug 28.
10
Coevolution with phages does not influence the evolution of bacterial mutation rates in soil.
ISME J. 2013 Nov;7(11):2242-4. doi: 10.1038/ismej.2013.105. Epub 2013 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验