Suppr超能文献

蓝藻烷烃调节光合循环电子传递以协助冷胁迫下的生长。

Cyanobacterial Alkanes Modulate Photosynthetic Cyclic Electron Flow to Assist Growth under Cold Stress.

作者信息

Berla Bertram M, Saha Rajib, Maranas Costas D, Pakrasi Himadri B

机构信息

Department of Energy, Environmental, and Chemical Engineering Washington University, St. Louis, MO 63130, USA.

Department of Biology, Washington University, St. Louis, MO 63130, USA.

出版信息

Sci Rep. 2015 Oct 13;5:14894. doi: 10.1038/srep14894.

Abstract

All cyanobacterial membranes contain diesel-range C15-C19 hydrocarbons at concentrations similar to chlorophyll. Recently, two universal but mutually exclusive hydrocarbon production pathways in cyanobacteria were discovered. We engineered a mutant of Synechocystis sp. PCC 6803 that produces no alkanes, which grew poorly at low temperatures. We analyzed this defect by assessing the redox kinetics of PSI. The mutant exhibited enhanced cyclic electron flow (CEF), especially at low temperature. CEF raises the ATP:NADPH ratio from photosynthesis and balances reductant requirements of biosynthesis with maintaining the redox poise of the electron transport chain. We conducted in silico flux balance analysis and showed that growth rate reaches a distinct maximum for an intermediate value of CEF equivalent to recycling 1 electron in 4 from PSI to the plastoquinone pool. Based on this analysis, we conclude that the lack of membrane alkanes causes higher CEF, perhaps for maintenance of redox poise. In turn, increased CEF reduces growth by forcing the cell to use less energy-efficient pathways, lowering the quantum efficiency of photosynthesis. This study highlights the unique and universal role of medium-chain hydrocarbons in cyanobacterial thylakoid membranes: they regulate redox balance and reductant partitioning in these oxygenic photosynthetic cells under stress.

摘要

所有蓝藻细胞膜都含有浓度与叶绿素相似的柴油范围的C15 - C19烃类。最近,在蓝藻中发现了两条普遍但相互排斥的烃类产生途径。我们构建了集胞藻PCC 6803的一个不产烷烃的突变体,该突变体在低温下生长不佳。我们通过评估光系统I(PSI)的氧化还原动力学来分析这一缺陷。该突变体表现出增强的循环电子流(CEF),尤其是在低温下。CEF提高了光合作用产生的ATP与NADPH的比率,并在维持电子传递链的氧化还原平衡的同时平衡了生物合成对还原剂的需求。我们进行了计算机通量平衡分析,结果表明,对于相当于每4个从PSI循环到质体醌库的电子中循环1个电子的CEF中间值,生长速率达到一个明显的最大值。基于此分析,我们得出结论,膜烷烃的缺乏导致更高的CEF,这可能是为了维持氧化还原平衡。反过来,增加的CEF通过迫使细胞使用能量效率较低的途径来降低生长速率,降低光合作用的量子效率。这项研究突出了中链烃类在蓝藻类囊体膜中的独特且普遍的作用:在应激条件下,它们调节这些产氧光合细胞中的氧化还原平衡和还原剂分配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/676e/4602277/f1631660614c/srep14894-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验