Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.
ExxonMobil Technology and Engineering Co. (EMTEC), CLD286 Annandale, 1545 Route 22 East, Annandale, NJ, 08801, USA.
Nat Commun. 2024 Jun 6;15(1):4842. doi: 10.1038/s41467-024-49090-7.
Carbon capture and biochemical storage are some of the primary drivers of photosynthetic yield and productivity. To elucidate the mechanisms governing carbon allocation, we designed a photosynthetic light response test system for genetic and metabolic carbon assimilation tracking, using microalgae as simplified plant models. The systems biology mapping of high light-responsive photophysiology and carbon utilization dynamics between two variants of the same Picochlorum celeri species, TG1 and TG2 elucidated metabolic bottlenecks and transport rates of intermediates using instationary C-fluxomics. Simultaneous global gene expression dynamics showed 73% of the annotated genes responding within one hour, elucidating a singular, diel-responsive transcription factor, closely related to the CCA1/LHY clock genes in plants, with significantly altered expression in TG2. Transgenic P. celeri TG1 cells expressing the TG2 CCA1/LHY gene, showed 15% increase in growth rates and 25% increase in storage carbohydrate content, supporting a coordinating regulatory function for a single transcription factor.
碳捕获和生物化学储存是光合作用产量和生产力的主要驱动因素之一。为了阐明控制碳分配的机制,我们设计了一种用于遗传和代谢碳同化追踪的光合光响应测试系统,使用微藻作为简化的植物模型。高光照响应光生理学和两种相同的 Picochlorum celeri 物种(TG1 和 TG2)之间碳利用动态的系统生物学图谱,使用非定态 C-通量组学阐明了代谢瓶颈和中间产物的转运率。同时进行的全局基因表达动态研究表明,在一小时内有 73%的注释基因发生响应,阐明了一种单一的、昼夜响应的转录因子,与植物中的 CCA1/LHY 时钟基因密切相关,在 TG2 中的表达显著改变。表达 TG2 CCA1/LHY 基因的转基因 P. celeri TG1 细胞的生长速率提高了 15%,储存碳水化合物含量提高了 25%,支持单一转录因子的协调调节功能。