Suppr超能文献

单纳米颗粒到三维超笼:人工酶系统的构建

Single Nanoparticle to 3D Supercage: Framing for an Artificial Enzyme System.

作者信息

Cai Ren, Yang Dan, Peng Shengjie, Chen Xigao, Huang Yun, Liu Yuan, Hou Weijia, Yang Shengyuan, Liu Zhenbao, Tan Weihong

机构信息

Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida , Gainesville, Florida 32611-7200, United States.

School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798.

出版信息

J Am Chem Soc. 2015 Nov 4;137(43):13957-63. doi: 10.1021/jacs.5b09337. Epub 2015 Oct 23.

Abstract

A facile strategy has been developed to fabricate Cu(OH)2 supercages (SCs) as an artificial enzyme system with intrinsic peroxidase-mimic activities (PMA). SCs with high catalytic activity and excellent recyclability were generated via direct conversion of amorphous Cu(OH)2 nanoparticles (NPs) at room temperature. More specifically, the process that takes a single nanoparticle to a 3D supercage involves two basic steps. First, with addition of a copper-ammonia complex, the Cu(2+) ions that are located on the surface of amorphous Cu(OH)2 NPs would evolve into a fine lamellar structure by coordination and migration and eventually convert to 1D nanoribbons around the NPs. Second, accompanied by the migration of Cu(2+), a hollow cavity is generated in the inner NPs, such that a single nanoparticle eventually becomes a nanoribbon-assembled 3D hollow cage. These Cu(OH)2 SCs were then engineered as an artificial enzymatic system with higher efficiency for intrinsic PMA than the peroxidase activity of a natural enzyme, horseradish peroxidase.

摘要

已开发出一种简便策略来制备作为具有内在过氧化物酶模拟活性(PMA)的人工酶系统的氢氧化铜超笼(SCs)。通过在室温下将无定形氢氧化铜纳米颗粒(NPs)直接转化生成具有高催化活性和优异可回收性的SCs。更具体地说,将单个纳米颗粒转变为三维超笼的过程涉及两个基本步骤。首先,添加铜氨配合物后,位于无定形氢氧化铜NPs表面的铜离子通过配位和迁移演变成精细的层状结构,并最终在NPs周围转化为一维纳米带。其次,伴随着铜离子的迁移,内部NPs中产生一个中空腔,使得单个纳米颗粒最终变成由纳米带组装而成的三维中空笼。然后将这些氢氧化铜SCs设计成一种人工酶系统,其内在PMA效率高于天然酶辣根过氧化物酶的过氧化物酶活性。

相似文献

1
Single Nanoparticle to 3D Supercage: Framing for an Artificial Enzyme System.
J Am Chem Soc. 2015 Nov 4;137(43):13957-63. doi: 10.1021/jacs.5b09337. Epub 2015 Oct 23.
4
A Facile Process for the Preparation of Three-Dimensional Hollow Zn(OH)2 Nanoflowers at Room Temperature.
Chemistry. 2016 Aug 1;22(32):11143-7. doi: 10.1002/chem.201600906. Epub 2016 Jul 4.
5
Enzyme-mimic activity of ferric nano-core residing in ferritin and its biosensing applications.
Anal Chem. 2011 Nov 15;83(22):8611-6. doi: 10.1021/ac202049q. Epub 2011 Sep 26.
6
Green synthesis of the Cu/ZnO nanoparticles mediated by Euphorbia prolifera leaf extract and investigation of their catalytic activity.
J Colloid Interface Sci. 2016 Jun 15;472:173-9. doi: 10.1016/j.jcis.2016.03.042. Epub 2016 Mar 19.
7
A facile one-pot method to prepare peroxidase-like nanogel artificial enzymes for highly efficient and controllable catalysis.
Colloids Surf B Biointerfaces. 2019 Feb 1;174:352-359. doi: 10.1016/j.colsurfb.2018.11.021. Epub 2018 Nov 10.
9
Optimization of FeO nanozyme activity via single amino acid modification mimicking an enzyme active site.
Chem Commun (Camb). 2016 Dec 22;53(2):424-427. doi: 10.1039/c6cc08542c.
10
Versatile Three-Dimensional Porous Cu@Cu O Aerogel Networks as Electrocatalysts and Mimicking Peroxidases.
Angew Chem Int Ed Engl. 2018 Jun 4;57(23):6819-6824. doi: 10.1002/anie.201801369. Epub 2018 May 2.

引用本文的文献

2
MOF-derived nanozyme CuOx@C and its application for cascade colorimetric detection of phytosterols.
Mikrochim Acta. 2024 May 8;191(6):312. doi: 10.1007/s00604-024-06389-y.
3
Bioconjugation of nanozyme and natural enzyme for ultrasensitive detection of cholesterol.
Anal Sci. 2023 Apr;39(4):503-515. doi: 10.1007/s44211-022-00258-5. Epub 2023 Jan 5.
6
Aptamer-Modified Cu-Functionalized C-Dots: Versatile Means to Improve Nanozyme Activities-"Aptananozymes".
J Am Chem Soc. 2021 Aug 4;143(30):11510-11519. doi: 10.1021/jacs.1c03939. Epub 2021 Jul 21.
7
Protein-Inorganic Hybrid Nanoflowers as Efficient Biomimetic Antibiotics in the Treatment of Bacterial Infection.
Front Chem. 2021 Apr 30;9:681566. doi: 10.3389/fchem.2021.681566. eCollection 2021.
8
Free-Floating 2D Nanosheets with a Superlattice Assembled from FeO Nanoparticles for Peroxidase-Mimicking Activity.
ACS Appl Nano Mater. 2018;1(10):5389-5395. doi: 10.1021/acsanm.8b01380. Epub 2018 Sep 14.
10
Expanding the scope of chemiluminescence in bioanalysis with functional nanomaterials.
J Mater Chem B. 2019 Dec 14;7(46):7257-7266. doi: 10.1039/c9tb01029g. Epub 2019 Sep 23.

本文引用的文献

2
Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices.
Nat Nanotechnol. 2015 May;10(5):453-8. doi: 10.1038/nnano.2015.68. Epub 2015 Apr 13.
4
Magneto-fluorescent core-shell supernanoparticles.
Nat Commun. 2014 Oct 9;5:5093. doi: 10.1038/ncomms6093.
5
Self-assembly of magnetite nanocubes into helical superstructures.
Science. 2014 Sep 5;345(6201):1149-53. doi: 10.1126/science.1254132. Epub 2014 Jul 24.
6
Graphene quantum dots-band-aids used for wound disinfection.
ACS Nano. 2014 Jun 24;8(6):6202-10. doi: 10.1021/nn501640q. Epub 2014 Jun 2.
7
Catalytically active nanomaterials: a promising candidate for artificial enzymes.
Acc Chem Res. 2014 Apr 15;47(4):1097-105. doi: 10.1021/ar400250z. Epub 2014 Jan 17.
8
Self-assembly of colloidal one-dimensional nanocrystals.
Chem Soc Rev. 2014 Apr 7;43(7):2301-23. doi: 10.1039/c3cs60397k. Epub 2014 Jan 13.
9
Solvent-mediated self-assembly of nanocube superlattices.
J Am Chem Soc. 2014 Jan 29;136(4):1352-9. doi: 10.1021/ja408250q. Epub 2014 Jan 15.
10
Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications.
J Am Chem Soc. 2013 Nov 6;135(44):16438-45. doi: 10.1021/ja406115e. Epub 2013 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验