Suppr超能文献

从高度下采样的活动数据中高效“散弹枪式”推断神经连接性

Efficient "Shotgun" Inference of Neural Connectivity from Highly Sub-sampled Activity Data.

作者信息

Soudry Daniel, Keshri Suraj, Stinson Patrick, Oh Min-Hwan, Iyengar Garud, Paninski Liam

机构信息

Department of Statistics, Department of Neuroscience, the Center for Theoretical Neuroscience, the Grossman Center for the Statistics of Mind, the Kavli Institute for Brain Science, and the NeuroTechnology Center, Columbia University, New York, New York, United States of America.

Department of Industrial Engineering and Operations Research, Columbia University, New York, New York, United States of America.

出版信息

PLoS Comput Biol. 2015 Oct 14;11(10):e1004464. doi: 10.1371/journal.pcbi.1004464. eCollection 2015 Oct.

Abstract

Inferring connectivity in neuronal networks remains a key challenge in statistical neuroscience. The "common input" problem presents a major roadblock: it is difficult to reliably distinguish causal connections between pairs of observed neurons versus correlations induced by common input from unobserved neurons. Available techniques allow us to simultaneously record, with sufficient temporal resolution, only a small fraction of the network. Consequently, naive connectivity estimators that neglect these common input effects are highly biased. This work proposes a "shotgun" experimental design, in which we observe multiple sub-networks briefly, in a serial manner. Thus, while the full network cannot be observed simultaneously at any given time, we may be able to observe much larger subsets of the network over the course of the entire experiment, thus ameliorating the common input problem. Using a generalized linear model for a spiking recurrent neural network, we develop a scalable approximate expected loglikelihood-based Bayesian method to perform network inference given this type of data, in which only a small fraction of the network is observed in each time bin. We demonstrate in simulation that the shotgun experimental design can eliminate the biases induced by common input effects. Networks with thousands of neurons, in which only a small fraction of the neurons is observed in each time bin, can be quickly and accurately estimated, achieving orders of magnitude speed up over previous approaches.

摘要

推断神经网络中的连接性仍然是统计神经科学中的一个关键挑战。“共同输入”问题是一个主要障碍:很难可靠地区分观察到的神经元对之间的因果联系与未观察到的神经元的共同输入所诱导的相关性。现有技术使我们能够以足够的时间分辨率同时记录网络中仅一小部分的活动。因此,忽略这些共同输入效应的简单连接性估计器存在很大偏差。这项工作提出了一种“散弹枪”实验设计,即我们以串行方式短暂地观察多个子网络。因此,虽然在任何给定时间都无法同时观察到整个网络,但在整个实验过程中我们也许能够观察到网络中更大的子集,从而缓解共同输入问题。对于脉冲递归神经网络,我们使用广义线性模型,开发了一种基于可扩展近似期望对数似然的贝叶斯方法,用于在每次仅观察到网络一小部分的这种数据类型下进行网络推断。我们在模拟中证明,散弹枪实验设计可以消除由共同输入效应引起的偏差。对于包含数千个神经元的网络,其中每次仅观察到一小部分神经元,可以快速准确地进行估计,与之前的方法相比,速度提高了几个数量级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e55/4605541/37e20f42b0e9/pcbi.1004464.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验