Teomy Eial, Shokef Yair
School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032133. doi: 10.1103/PhysRevE.92.032133. Epub 2015 Sep 24.
We investigate the relation between the cooperative length and relaxation time, represented, respectively, by the culling time and the persistence time, in the Fredrickson-Andersen, Kob-Andersen, and spiral kinetically constrained models. By mapping the dynamics to diffusion of defects, we find a relation between the persistence time, τ_{p}, which is the time until a particle moves for the first time, and the culling time, τ_{c}, which is the minimal number of particles that need to move before a specific particle can move, τ_{p}=τ_{c}^{γ}, where γ is model- and dimension-dependent. We also show that the persistence function in the Kob-Andersen and Fredrickson-Andersen models decays subexponentially in time, P(t)=exp[-(t/τ)^{β}], but unlike previous works, we find that the exponent β appears to decay to 0 as the particle density approaches 1.
我们研究了在弗雷德里克森 - 安德森模型、科布 - 安德森模型和螺旋动力学约束模型中,分别由剔除时间和持续时间所代表的协同长度与弛豫时间之间的关系。通过将动力学映射到缺陷扩散,我们发现了持续时间(即粒子首次移动之前的时间)τₚ与剔除时间(即特定粒子能够移动之前所需移动的最少粒子数)τₑ之间的关系,τₚ = τₑ^γ,其中γ取决于模型和维度。我们还表明,科布 - 安德森模型和弗雷德里克森 - 安德森模型中的持续函数随时间呈亚指数衰减,P(t) = exp[-(t/τ)^β],但与之前的研究不同,我们发现随着粒子密度接近1,指数β似乎衰减至0。