Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, 06974 Seoul, Republic of Korea.
Department of Chemistry, Chung-Ang University, 06974 Seoul, Republic of Korea.
Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12733-12742. doi: 10.1073/pnas.1900239116. Epub 2019 Jun 7.
Thermal motion in complex fluids is a complicated stochastic process but ubiquitously exhibits initial ballistic, intermediate subdiffusive, and long-time diffusive motion, unless interrupted. Despite its relevance to numerous dynamical processes of interest in modern science, a unified, quantitative understanding of thermal motion in complex fluids remains a challenging problem. Here, we present a transport equation and its solutions, which yield a unified quantitative explanation of the mean-square displacement (MSD), the non-Gaussian parameter (NGP), and the displacement distribution of complex fluids. In our approach, the environment-coupled diffusion kernel and its time correlation function (TCF) are the essential quantities that determine transport dynamics and characterize mobility fluctuation of complex fluids; their time profiles are directly extractable from a model-free analysis of the MSD and NGP or, with greater computational expense, from the two-point and four-point velocity autocorrelation functions. We construct a general, explicit model of the diffusion kernel, comprising one unbound-mode and multiple bound-mode components, which provides an excellent approximate description of transport dynamics of various complex fluidic systems such as supercooled water, colloidal beads diffusing on lipid tubes, and dense hard disk fluid. We also introduce the concepts of intrinsic disorder and extrinsic disorder that have distinct effects on transport dynamics and different dependencies on temperature and density. This work presents an unexplored direction for quantitative understanding of transport and transport-coupled processes in complex disordered media.
复杂流体中的热运动是一个复杂的随机过程,但普遍表现出初始弹道、中间亚扩散和长时间扩散运动,除非被中断。尽管它与现代科学中许多感兴趣的动力学过程有关,但对复杂流体中的热运动进行统一的、定量的理解仍然是一个具有挑战性的问题。在这里,我们提出了一个输运方程及其解,为复杂流体的均方位移(MSD)、非高斯参数(NGP)和位移分布提供了一个统一的定量解释。在我们的方法中,环境耦合的扩散核及其时间相关函数(TCF)是决定输运动力学和表征复杂流体迁移率波动的基本量;它们的时间分布可以直接从 MSD 和 NGP 的无模型分析中提取,或者计算成本更高时,可以从两点和四点速度自相关函数中提取。我们构建了一个通用的、显式的扩散核模型,包含一个无束缚模式和多个束缚模式分量,该模型为各种复杂流体系统(如过冷水、在脂质管上扩散的胶体颗粒以及密集的硬磁盘流体)的输运动力学提供了极好的近似描述。我们还引入了固有无序和外在无序的概念,它们对输运动力学有不同的影响,并且对温度和密度的依赖性也不同。这项工作为定量理解复杂无序介质中的输运和输运耦合过程提供了一个新的方向。