Mani Ethayaraja, Löwen Hartmut
Polymer Engineering and Colloid Science Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032301. doi: 10.1103/PhysRevE.92.032301. Epub 2015 Sep 2.
In equilibrium, colloidal suspensions governed by short-range attractive and long-range repulsive interactions form thermodynamically stable clusters. Using Brownian dynamics computer simulations, we investigate how this equilibrium clustering is affected when such particles are self-propelled. We find that the clustering process is stable under self-propulsion. For the range of interaction parameters studied and at low particle density, the cluster size increases with the speed of self-propulsion (activity) and for higher activity the cluster size decreases, showing a nonmonotonic variation of cluster size with activity. This clustering behavior is distinct from the pure kinetic (or motility-induced) clustering of self-propelling particles which is observed at significantly higher activities and densities. We present an equilibrium model incorporating the effect of activity as activity-induced attraction and repulsion by imposing that the strength of these interactions depend on activity superlinearly. The model explains the cluster size dependence of activity obtained from simulations semiquantitatively. Our predictions are verifiable in experiments on interacting synthetic colloidal microswimmers.
在平衡状态下,由短程吸引和长程排斥相互作用控制的胶体悬浮液会形成热力学稳定的聚集体。我们使用布朗动力学计算机模拟,研究当此类粒子进行自推进时,这种平衡聚集会受到怎样的影响。我们发现,在自推进作用下,聚集过程是稳定的。在所研究的相互作用参数范围内以及低粒子密度下,聚集体尺寸会随着自推进速度(活性)的增加而增大,而在更高的活性下,聚集体尺寸会减小,这表明聚集体尺寸随活性呈现非单调变化。这种聚集行为不同于在显著更高的活性和密度下观察到的自推进粒子的纯动力学(或运动诱导)聚集。我们提出了一个平衡模型,通过假定这些相互作用的强度超线性地依赖于活性,将活性的影响纳入其中,作为活性诱导的吸引和排斥。该模型半定量地解释了从模拟中得到的聚集体尺寸对活性的依赖性。我们的预测在相互作用的合成胶体微游动器的实验中是可验证的。