Suppr超能文献

通过分裂抑制实现增益控制可防止神经群体模型突然转变为混沌状态。

Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model.

作者信息

Papasavvas Christoforos A, Wang Yujiang, Trevelyan Andrew J, Kaiser Marcus

机构信息

Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom.

Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing Science, Newcastle University, Claremont Tower, Newcastle upon Tyne NE1 7RU, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032723. doi: 10.1103/PhysRevE.92.032723. Epub 2015 Sep 23.

Abstract

Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics.

摘要

实验结果表明,在皮质神经元网络中存在两种不同的抑制机制:相减抑制和相除抑制。它们分别通过增加达到最大输出所需的输入,或通过降低增益和最大输出值本身,来调节其目标神经元的输入-输出功能。然而,这些机制在网络动力学中的作用却鲜为人知。我们引入了一种新颖的群体模型,并通过数值方法研究了相除抑制对网络动力学的影响。具体而言,我们关注通过倍周期分岔从规则振荡状态到混沌动力学状态的转变。具有相除抑制的模型表现出向混沌的通用转变率(费根鲍姆行为)。相比之下,在没有相除抑制的等效模型中,向混沌的转变率不受通用常数的限制(非费根鲍姆行为)。当仅存在相减抑制时,这种非费根鲍姆行为与参数空间中分岔曲线的相互作用有关。实际上,对参数空间的搜索表明,当包含相除抑制时,这种相互作用是不可能的。因此,相除抑制可防止非费根鲍姆行为,从而防止任何突然向混沌的转变。结果表明,神经元网络中的相除抑制在保持有序和混沌状态良好分离以及防止病理性神经动力学的发生方面可能起着关键作用。

相似文献

1
Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032723. doi: 10.1103/PhysRevE.92.032723. Epub 2015 Sep 23.
2
Gain control with A-type potassium current: IA as a switch between divisive and subtractive inhibition.
PLoS Comput Biol. 2018 Jul 9;14(7):e1006292. doi: 10.1371/journal.pcbi.1006292. eCollection 2018 Jul.
3
Divisive gain modulation enables flexible and rapid entrainment in a neocortical microcircuit model.
J Neurophysiol. 2020 Mar 1;123(3):1133-1143. doi: 10.1152/jn.00401.2019. Epub 2020 Feb 5.
4
Gain modulation of neuronal responses by subtractive and divisive mechanisms of inhibition.
J Neurophysiol. 2009 Feb;101(2):958-68. doi: 10.1152/jn.90547.2008. Epub 2008 Dec 10.
5
Coherent chaos in a recurrent neural network with structured connectivity.
PLoS Comput Biol. 2018 Dec 13;14(12):e1006309. doi: 10.1371/journal.pcbi.1006309. eCollection 2018 Dec.
6
Dynamics of neural populations: stability and synchrony.
Network. 2006 Mar;17(1):3-29. doi: 10.1080/09548980500421154.
7
Quantifying Strength of Chaos in the Population Firing Rate of Neurons.
Neural Comput. 2018 Mar;30(3):792-819. doi: 10.1162/neco_a_01049. Epub 2017 Dec 8.
8
Coexistence of multiple periodic and chaotic regimes in biochemical oscillations with phase shifts.
Acta Biotheor. 1998 Mar;46(1):37-51. doi: 10.1023/a:1000899820111.
10
Bifurcations and chaos in a predator-prey system with the Allee effect.
Proc Biol Sci. 2004 Jul 7;271(1546):1407-14. doi: 10.1098/rspb.2004.2733.

引用本文的文献

4
Divisive gain modulation enables flexible and rapid entrainment in a neocortical microcircuit model.
J Neurophysiol. 2020 Mar 1;123(3):1133-1143. doi: 10.1152/jn.00401.2019. Epub 2020 Feb 5.
5
The Presynaptic Regulation of Dopamine and Norepinephrine Synthesis Has Dissociable Effects on Different Kinds of Cognitive Conflicts.
Mol Neurobiol. 2019 Dec;56(12):8087-8100. doi: 10.1007/s12035-019-01664-z. Epub 2019 Jun 10.
6
Catecholaminergic Modulation of Conflict Control Depends on the Source of Conflicts.
Int J Neuropsychopharmacol. 2018 Oct 1;21(10):901-909. doi: 10.1093/ijnp/pyy063.

本文引用的文献

1
On the nature of seizure dynamics.
Brain. 2014 Aug;137(Pt 8):2210-30. doi: 10.1093/brain/awu133. Epub 2014 Jun 11.
2
The contribution of synaptic location to inhibitory gain control in pyramidal cells.
Physiol Rep. 2013 Oct;1(5):e00067. doi: 10.1002/phy2.67. Epub 2013 Sep 23.
3
Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons.
Nat Neurosci. 2013 Aug;16(8):1068-76. doi: 10.1038/nn.3446. Epub 2013 Jun 30.
4
The information content of physiological and epileptic brain activity.
J Physiol. 2013 Feb 15;591(4):799-805. doi: 10.1113/jphysiol.2012.240358. Epub 2012 Oct 1.
5
Phase space approach for modeling of epileptic dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 1):061918. doi: 10.1103/PhysRevE.85.061918. Epub 2012 Jun 22.
6
Division and subtraction by distinct cortical inhibitory networks in vivo.
Nature. 2012 Aug 16;488(7411):343-8. doi: 10.1038/nature11347.
7
Quantifying the relative contributions of divisive and subtractive feedback to rhythm generation.
PLoS Comput Biol. 2011 Apr;7(4):e1001124. doi: 10.1371/journal.pcbi.1001124. Epub 2011 Apr 21.
8
Neuronal arithmetic.
Nat Rev Neurosci. 2010 Jul;11(7):474-89. doi: 10.1038/nrn2864.
9
Transitions to spike-wave oscillations and epileptic dynamics in a human cortico-thalamic mean-field model.
J Comput Neurosci. 2009 Dec;27(3):507-26. doi: 10.1007/s10827-009-0166-2. Epub 2009 Jun 5.
10
Key role of coupling, delay, and noise in resting brain fluctuations.
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10302-7. doi: 10.1073/pnas.0901831106. Epub 2009 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验