Suppr超能文献

具有阿利效应的捕食者 - 猎物系统中的分岔与混沌

Bifurcations and chaos in a predator-prey system with the Allee effect.

作者信息

Morozov Andrew, Petrovskii Sergei, Li Bai-Lian

机构信息

Ecological Complexity and Modeling Laboratory, Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521-0124, USA.

出版信息

Proc Biol Sci. 2004 Jul 7;271(1546):1407-14. doi: 10.1098/rspb.2004.2733.

Abstract

It is known from many theoretical studies that ecological chaos may have numerous significant impacts on the population and community dynamics. Therefore, identification of the factors potentially enhancing or suppressing chaos is a challenging problem. In this paper, we show that chaos can be enhanced by the Allee effect. More specifically, we show by means of computer simulations that in a time-continuous predator-prey system with the Allee effect the temporal population oscillations can become chaotic even when the spatial distribution of the species remains regular. By contrast, in a similar system without the Allee effect, regular species distribution corresponds to periodic/quasi-periodic oscillations. We investigate the routes to chaos and show that in the spatially regular predator-prey system with the Allee effect, chaos appears as a result of series of period-doubling bifurcations. We also show that this system exhibits period-locking behaviour: a small variation of parameters can lead to alternating regular and chaotic dynamics.

摘要

从许多理论研究中可知,生态混沌可能对种群和群落动态产生众多重大影响。因此,识别潜在增强或抑制混沌的因素是一个具有挑战性的问题。在本文中,我们表明阿利效应可以增强混沌。更具体地说,我们通过计算机模拟表明,在具有阿利效应的时间连续捕食者 - 猎物系统中,即使物种的空间分布保持规则,种群的时间振荡也可能变得混沌。相比之下,在没有阿利效应的类似系统中,规则的物种分布对应于周期性/准周期性振荡。我们研究了通向混沌的途径,并表明在具有阿利效应的空间规则捕食者 - 猎物系统中,混沌是一系列倍周期分岔的结果。我们还表明该系统表现出周期锁定行为:参数的微小变化会导致规则和混沌动态交替出现。

相似文献

1
Bifurcations and chaos in a predator-prey system with the Allee effect.
Proc Biol Sci. 2004 Jul 7;271(1546):1407-14. doi: 10.1098/rspb.2004.2733.
2
Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model.
Math Biosci Eng. 2018 Aug 1;15(4):883-904. doi: 10.3934/mbe.2018040.
5
Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect.
J Theor Biol. 2006 Jan 7;238(1):18-35. doi: 10.1016/j.jtbi.2005.05.021. Epub 2005 Jul 6.
7
A delayed eco-epidemiological system with infected prey and predator subject to the weak Allee effect.
Math Biosci. 2015 May;263:198-208. doi: 10.1016/j.mbs.2015.02.013. Epub 2015 Mar 5.
8
From chaos to chaos. An analysis of a discrete age-structured prey-predator model.
J Math Biol. 2001 Dec;43(6):471-500. doi: 10.1007/s002850100101.
9
Competitive coexistence in stoichiometric chaos.
Chaos. 2007 Sep;17(3):033108. doi: 10.1063/1.2752491.
10
Regimes of biological invasion in a predator-prey system with the Allee effect.
Bull Math Biol. 2005 May;67(3):637-61. doi: 10.1016/j.bulm.2004.09.003.

引用本文的文献

1
Modeling bacterial growth and Allee effect via Allen-Cahn theoretical framework.
Sci Rep. 2025 Aug 20;15(1):30521. doi: 10.1038/s41598-025-16427-1.
2
Dynamics of predator-prey system with the consequences of double Allee effect in prey population.
J Biol Phys. 2025 Jan 20;51(1):5. doi: 10.1007/s10867-025-09670-0.
4
Population dynamics with spatial structure and an Allee effect.
Proc Math Phys Eng Sci. 2020 Oct;476(2242):20200501. doi: 10.1098/rspa.2020.0501. Epub 2020 Oct 21.
5
Effect of time delay on pattern dynamics in a spatial epidemic model.
Physica A. 2014 Oct 15;412:137-148. doi: 10.1016/j.physa.2014.06.038. Epub 2014 Jul 1.
6
Chaos in a nonautonomous eco-epidemiological model with delay.
Appl Math Model. 2020 Mar;79:865-880. doi: 10.1016/j.apm.2019.11.006. Epub 2019 Nov 8.
7
Predator-prey system with strong Allee effect in prey.
J Math Biol. 2011 Mar;62(3):291-331. doi: 10.1007/s00285-010-0332-1. Epub 2010 Mar 12.
8
The role of noise in a predator-prey model with Allee effect.
J Biol Phys. 2009 May;35(2):185-96. doi: 10.1007/s10867-009-9139-y. Epub 2009 Mar 4.
9
Periodic travelling waves in cyclic populations: field studies and reaction-diffusion models.
J R Soc Interface. 2008 May 6;5(22):483-505. doi: 10.1098/rsif.2007.1327.

本文引用的文献

1
Quantification of the spatial aspect of chaotic dynamics in biological and chemical systems.
Bull Math Biol. 2003 May;65(3):425-46. doi: 10.1016/S0092-8240(03)00004-1.
2
How predation can slow, stop or reverse a prey invasion.
Bull Math Biol. 2001 Jul;63(4):655-84. doi: 10.1006/bulm.2001.0239.
3
Speeds of invasion in a model with strong or weak Allee effects.
Math Biosci. 2001 May;171(1):83-97. doi: 10.1016/s0025-5564(01)00048-7.
4
Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics.
Theor Popul Biol. 2001 Mar;59(2):157-74. doi: 10.1006/tpbi.2000.1509.
5
Allee effects can both conserve and create spatial heterogeneity in population densities.
Theor Popul Biol. 1999 Dec;56(3):231-42. doi: 10.1006/tpbi.1999.1430.
6
Interactions between local dynamics and dispersal: insights from single species models.
Theor Popul Biol. 1998 Feb;53(1):44-59. doi: 10.1006/tpbi.1997.1340.
7
Chaotic Dynamics in an Insect Population.
Science. 1997 Jan 17;275(5298):389-91. doi: 10.1126/science.275.5298.389.
8
Chaos reduces species extinction by amplifying local population noise.
Nature. 1993 Jul 15;364(6434):229-32. doi: 10.1038/364229a0.
9
Ecological chaos in the wake of invasion.
Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2524-8. doi: 10.1073/pnas.92.7.2524.
10
Dissipative structure: an explanation and an ecological example.
J Theor Biol. 1972 Dec;37(3):545-59. doi: 10.1016/0022-5193(72)90090-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验