Suppr超能文献

测量和建模多重网络中的相关性。

Measuring and modeling correlations in multiplex networks.

作者信息

Nicosia Vincenzo, Latora Vito

机构信息

School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032805. doi: 10.1103/PhysRevE.92.032805. Epub 2015 Sep 11.

Abstract

The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance.

摘要

许多复杂系统的基本组成部分之间的相互作用在性质上可能有所不同。因此,此类系统自然可以用多重或多层网络来描述,即每一层代表同一组节点之间不同类型相互作用的网络。如今,人们越来越关注理解何时以及为何用多重网络描述是必要的,以及为何它比单层投影更具信息量。在此,我们通过对多重网络中的相关性进行全面研究,为这场辩论做出贡献。节点属性的相关性,尤其是度 - 度相关性,已在单层网络中得到深入研究。在此,我们将这一理念扩展到研究和刻画多重网络不同层之间的相关性。此类相关性本质上是多重的,我们首先通过构建和分析来自现实世界的几个多重网络对其进行实证研究。特别是,我们引入各种度量来刻画节点活动及其在不同层的度之间以及活动与度之间的相关性。我们表明,现实世界的网络确实呈现出非平凡的多重相关性。例如,我们发现同一多重网络的两层在节点度方面呈正相关,而另外两层呈负相关的情况。然后,我们专注于构建合成多重网络,提出一系列模型来重现实证观察到的相关性和/或评估它们的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验