Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, 8093 Zürich (Switzerland).
Division of Chemistry, Graduate School of Science, Kyoto University, 606-8502 Kyoto (Japan).
Angew Chem Int Ed Engl. 2015 Oct 19;54(43):12592-6. doi: 10.1002/anie.201504782. Epub 2015 Aug 26.
The power and versatility of NMR spectroscopy is strongly related to the ability to manipulate NMR interactions by the application of radio-frequency (rf) pulse sequences. Unfortunately, the rf fields seen by the spins differ from the ones programmed by the experimentalist. Pulse transients, i.e., deviations of the amplitude and phase of the rf fields from the desired values, can have a severe impact on the performance of pulse sequences and can lead to inconsistent results. Here, we demonstrate how transient-compensated pulses can greatly improve the efficiency and reproducibility of NMR experiments. The implementation is based on a measurement of the characteristics of the resonance circuit and does not rely on an experimental optimization of the NMR signal. We show how the pulse sequence has to be modified to use it with transient-compensated pulses. The efficiency and reproducibility of the transient-compensated sequence is greatly superior to the original POST-C7 sequence.
NMR 光谱的强大功能和多功能性与其通过应用射频(rf)脉冲序列来操纵 NMR 相互作用的能力密切相关。不幸的是,自旋所看到的 rf 场与实验人员所编程的 rf 场不同。脉冲瞬变,即 rf 场的幅度和相位偏离期望值,会对脉冲序列的性能产生严重影响,并导致结果不一致。在这里,我们展示了瞬态补偿脉冲如何极大地提高 NMR 实验的效率和可重复性。该实现基于对谐振电路特性的测量,不依赖于对 NMR 信号的实验优化。我们展示了如何修改脉冲序列以与瞬态补偿脉冲一起使用。与原始 POST-C7 序列相比,瞬态补偿序列的效率和可重复性有了很大提高。