Suppr超能文献

用于协助放射科医生在胸部 X 光检查中检测和识别无导线植入式电子设备以进行 MRI 前安全筛查的人工智能模型的部署前评估:已实现的实施需求和提议的操作解决方案。

Pre-deployment assessment of an AI model to assist radiologists in chest X-ray detection and identification of lead-less implanted electronic devices for pre-MRI safety screening: realized implementation needs and proposed operational solutions.

作者信息

White Richard D, Demirer Mutlu, Gupta Vikash, Sebro Ronnie A, Kusumoto Frederick M, Erdal Barbaros Selnur

机构信息

Mayo Clinic, Department of Radiology, Center for Augmented Intelligence in Imaging, Jacksonville, Florida, United States.

Mayo Clinic, Department of Cardiovascular Medicine, Jacksonville, Florida, United States.

出版信息

J Med Imaging (Bellingham). 2022 Sep;9(5):054504. doi: 10.1117/1.JMI.9.5.054504. Epub 2022 Oct 26.

Abstract

PURPOSE

Chest X-ray (CXR) use in pre-MRI safety screening, such as for lead-less implanted electronic device (LLIED) recognition, is common. To assist CXR interpretation, we "pre-deployed" an artificial intelligence (AI) model to assess (1) accuracies in LLIED-type (and consequently safety-level) identification, (2) safety implications of LLIED nondetections or misidentifications, (3) infrastructural or workflow requirements, and (4) demands related to model adaptation to real-world conditions.

APPROACH

A two-tier cascading methodology for LLIED detection/localization and identification on a frontal CXR was applied to evaluate the performance of the original nine-class AI model. With the unexpected early appearance of LLIED types during simulated real-world trialing, retraining of a newer 12-class version preceded retrialing. A zero footprint (ZF) graphical user interface (GUI)/viewer with DICOM-based output was developed for inference-result display and adjudication, supporting end-user engagement and model continuous learning and/or modernization.

RESULTS

During model testing or trialing using both the nine-class and 12-class models, robust detection/localization was consistently 100%, with mAP 0.99 from fivefold cross-validation. Safety-level categorization was high during both testing ( and , respectively) and trialing (accuracy 98% and 97%, respectively). LLIED-type identifications by the two models during testing (1) were 98.9% and 99.5% overall correct and (2) consistently showed (1.00 for 8/9 and 9/12 LLIED-types, respectively). Pre-deployment trialing of both models demonstrated overall type-identification accuracies of 94.5% and 95%, respectively. Of the small number of misidentifications, none involved MRI-stringently conditional or MRI-unsafe types of LLIEDs. Optimized ZF GUI/viewer operations led to greater user-friendliness for radiologist engagement.

CONCLUSIONS

Our LLIED-related AI methodology supports (1) 100% detection sensitivity, (2) high identification (including MRI-safety) accuracy, and (3) future model deployment with facilitated inference-result display and adjudication for ongoing model adaptation to future real-world experiences.

摘要

目的

胸部X光(CXR)用于MRI前的安全筛查,如用于识别无导线植入式电子设备(LLIED),这很常见。为辅助CXR解读,我们“预部署”了一个人工智能(AI)模型,以评估(1)LLIED类型(以及相应的安全级别)识别的准确性,(2)LLIED未检测到或错误识别的安全影响,(3)基础设施或工作流程要求,以及(4)与模型适应实际情况相关的需求。

方法

应用一种用于在正面CXR上检测/定位和识别LLIED的两层级联方法,以评估原始九类AI模型的性能。在模拟实际试验期间,由于LLIED类型意外提前出现,在重新试验之前对更新的十二类版本进行了重新训练。开发了一个具有基于DICOM输出的零足迹(ZF)图形用户界面(GUI)/查看器,用于推理结果显示和判定,支持最终用户参与以及模型的持续学习和/或现代化。

结果

在使用九类和十二类模型进行模型测试或试验期间,稳健的检测/定位率始终为100%,五重交叉验证的平均精度均值(mAP)为0.99。在测试(分别为 和 )和试验(准确率分别为98%和97%)期间,安全级别分类都很高。两个模型在测试期间对LLIED类型的识别(1)总体正确率分别为98.9%和99.5%,(2)始终显示 (8/9和9/12 LLIED类型分别为1.00)。两个模型的预部署试验表明总体类型识别准确率分别为94.5%和95%。在少数错误识别中,没有一个涉及MRI严格受限或MRI不安全类型的LLIED。优化后的ZF GUI/查看器操作提高了放射科医生参与的用户友好性。

结论

我们与LLIED相关的AI方法支持(1)100%的检测灵敏度,(2)高识别(包括MRI安全性)准确率,以及(3)未来模型部署,并便于推理结果显示和判定,以使模型能够持续适应未来的实际情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17a7/9603740/dba5932a99c1/JMI-009-054504-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验